Interpretation:
Which ions have longer Carbon-Oxygen bond lengths in Carbonate ion and in formate ion should be explained.
Concept Introduction:
Lewis structure is also known as Lewis dot diagrams or electron dot structures. The bond between atoms and lone pairs of electrons that is present in the molecule. Lewis structure represents each atom and their position in structure using the chemical symbol. Excess electrons forms the lone pair are given by pair of dots, and are located next to the atom.
According to the concept of resonance, when a single Lewis structure cannot describe a molecule accurately, a number of structures with same energy, position of nuclei, bonding and non-bonding pair of electrons are taken as the canonical structures of the hybrid which describes the molecule accurately.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Bundle: Chemistry: The Molecular Science, 5th, Loose-Leaf + OWLv2 with Quick Prep 24-Months Printed Access Card
- Best Lewis Formula and Molecular Geometry A student writes the Lewis electron-dot formula for the carbonate anion, CO32, as a Does this Lewis formula obey the octet rule? Explain. What are the formal charges on the atoms? Try describing the bonding for this formula in valence bond terms. Do you have any difficulty doing this? b Does this Lewis formula give a reasonable description of the electron structure, or is there a better one? If there is a better Lewis formula, write it down and explain why it is better. c The same student writes the following resonance description for CO2: Is there something wrong with this description? (What would you predict as the geometries of these formulas?) d Is one or the other formula a better description? Could a value for the dipole moment help you decide? e Can you write a Lewis formula that gives an even better description of CO2? Explain your answer.arrow_forwardWhich bond requires more energy to break: the carbon-oxygen bond in formaldehyde, H2CO, or the carbon-oxygen bond in carbon monoxide, CO?arrow_forwardFormamide, HC(O)NH2, is prepared at high pressures from carbon monoxide and ammonia, and serves as an industrial solvent (the parentheses around the O indicate that it is bonded only to the carbon atom and that the carbon atom is also bonded to the H and the N atoms). Two resonance forms (one with formal charges) can be written for formamide. Write both resonance structures, and predict the bond angles about the carbon and nitrogen atoms for each resonance form. Are they the same? Describe how the experimental determination of the HNH bond angle could be used to indicate which resonance form is more important.arrow_forward
- Bond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forward4. Among the known dioxygen species (O2+, O2, O2− and O22−), which is expected to have the shortest bond length? O2+ O2 O2− O22−arrow_forwardThere are two main types of covalent bond breakage. In ho-molytic breakage , each atom in the bond gets one of the shared electrons. In some cases, the electronega-tivity of adjacent atoms affects the bond energy. In heterolytic breakage, one atom gets both electrons and the other gets none;thus, a cation and an anion form. (a) Why is the C−C bond in H₃C−CF₃(423 kJ/mol) strongerthan that in H₃C−CH₃(376 kJ/mol)?(b) Use bond energy and any other data to calculate the heat ofreaction for the heterolytic cleavage of O₂.arrow_forward
- Phosphorus pentachloride, a key industrial compound with annual world production of about 2 x 107 kg, is used to make other compounds. It reacts with sulfur dioxide to produce phosphorus oxychloride (POCl3) and thionyl chloride (SOCl2). Draw a Lewis structure, and name the molecular shape of each product.arrow_forwardConsider peroxynitrite (chemical formula: ONOO−), a structural isomer of the nitrate anion. It is generated in the cell when nitric oxide (NO) reacts with the superoxide radical anion (O2-.). Peroxynitrite is a potent oxidant and nitrating agent and can lead to DNA and protein damage (this is the complete question) Draw the correct Lewis structure for peroxynitrite and indicate approximate bond angles. Tell how many molecular degrees of freedom of motion are present in peroxynitrite and what motions they correspond to.arrow_forwardCarbonate, CO32−, is a common polyatomic ion found in various materials from eggshells to antacids. What are the electron-pair geometry and molecular structure of this polyatomic ion?arrow_forward
- Hydrogen cyanide can be catalytically reduced with hydrogen to form methylamine. Use Lewis structures and bond energies to determine ΔH°rxn for HCN(g) + 2 H2(g) ⟶ CH3NH2(g)arrow_forwardOxygen gas reacts with sulfur tetrafluoride to slowly form sulfur tetrafluoride monoxide gas. Balance the equation for the formation of sulfur tetrafluoride monoxide. chemical reaction: 0,(g) + SF (g) → OSF,(g) Draw the Lewis structure of OSF, where the formal charge is zero on each atom. The sulfur atom is the central atom in the structure, and it is bonded to the oxygen atom and each of the four fluorine atoms. Select Draw Rings More Erase Use the bond energies in the table to estimate the enthalpy of reaction for the formation of sulfur tetrafluoride monoxide. étv Aaarrow_forwardBromomethane, CH;Br, is a very useful fumigant against a wide range of agricultural pests, from insects to the verticillium wilt fungus. Draw the Lewis structure of CH3Br.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning