
(a)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(a)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(b)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(b)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
(c)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(c)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
The oxidation state of
(d)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(d)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
(e)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(e)

Answer to Problem 84E
Answer:
Explanation of Solution
Explanation:
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(f)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(f)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
The oxidation states of
(g)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(g)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(h)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(h)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(i)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(i)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is oxidation state of
The oxidation state of
The oxidation state of
(j)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(j)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(k)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(k)

Answer to Problem 84E
Explanation of Solution
Ammonium ion has a
Therefore, the oxidation state of cerium must be
Case 1: To find the oxidation state of
Here x is the oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
Case 3: To find the oxidation state of
Here x is the oxidation state of
Case 4: To find the oxidation state of
Here x is the oxidation state of
Case 5: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
(l)
Interpretation: The oxidation state of given atom in the given molecule has to be calculated.
Concept introduction: The oxidation state is the distinction between the numbers of electrons connected by an atom in a composite as compared with the number of electrons in an atom of the element. The oxidation state is also called oxidation number
Rule 1: The oxidation numeral of an element in its open (uncombined) state is zero.
Rule 2: The oxidation numeral of a monatomic (one-atom) ion is the similar as the indict on the ion.
(l)

Answer to Problem 84E
Explanation of Solution
Case 1: To find the oxidation state of
Here x is oxidation state of
Case 2: To find the oxidation state of
Here x is the oxidation state of
The oxidation state of
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry: An Atoms First Approach
- true or false, given that a 20.00 mL sample of NaOH took 24.15 mL of 0.141 M HCI to reach the endpoint in a titration, the concentration of the NaOH is 1.17 M.arrow_forwardin the bromothymol blue experiment, pKa was measured. A closely related compound has a Ka of 2.10 x 10-5. What is the pKa?a) 7.1b) 4.7c) 2.0arrow_forwardcalculate the equilibrium concentration of H2 given that K= 0.017 at a constant temperature for this reaction. The inital concentration of HBr is 0.050 M.2HBr(g) ↔ H2(g) + Br2(g)a) 4.48 x 10-2 M b) 5.17 x 10-3 Mc) 1.03 x 10-2 Md) 1.70 x 10-2 Marrow_forward
- true or falsegiven these two equilibria with their equilibrium constants:H2(g) + CI2(l) ↔ 2HCI(g) K= 0.006 CI2(l) ↔ CI2(g) K= 0.30The equilibrium contstant for the following reaction is 1.8H2(g) + CI2 ↔ 2HCI(g)arrow_forwardI2(g) + CI2(g) ↔ 2ICIK for this reaction is 81.9. Find the equilibrium concentration of I2 if the inital concentration of I2 and CI2 are 0.010 Marrow_forwardtrue or false,the equilibrium constant for this reaction is 0.50.PCI5(g) ↔ PCI3(g) + CI2(g)Based on the above, the equilibrium constant for the following reaction is 0.25.2PCI5(g) ↔. 2PCI3(g) + 2CI2(g)arrow_forward
- true or false, using the following equilibrium, if carbon dioxide is added the equilibrium will shift toward the productsC(s) + CO2(g) ↔ 2CO(g)arrow_forward2S2O2/3- (aq) + I2 (aq) ---> S4O2/6- (aq) +2I- (aq) Experiment I2 (M) S2O3- (M) Initital Rate (M/s) 1 0.01 0.01 0.0004 2 0.01 0.02 0.0004 3 0.02 0.01 0.0008 Calculate the overall order for this reaction using the table data a) 3b) 0c) 2d) 1arrow_forwardthe decomposition of N2O5 is the first order with a half-life of 1.98 minutes. If the inital concentration of N2O5 is 0.200 M, what is the concentration after 6 minutes?a) 0.612 Mb) 0.035 Mc) 0.024 Md) 0.100 Marrow_forward
- 20.00 mL of 0.150 M HCI is titrated with 0.075 M NaOH. What volume of NaOH is needed?a) 50 mLb) 20 mLc) 40 mLd) 26.66 mLarrow_forward20.00 mL of 0.150 M NaOH is titrated with 37.75 mL of HCI. What is the molarity of the HCI?a) 0.150 Mb) 0.079 Mc) 0.025 Md) 0.050 Marrow_forwardin the following reaction, the OH- acts as which of these?NO2- (aq) + H2O (l) ⇌ OH- (aq) + HNO2 (aq)a) not a weak acidb) basec) acidarrow_forward
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





