
a)
Interpretation: The concentration of ions in the solution has to be calculated.
Concept Introduction: Concentration can be defined in terms of molarity as moles of solute per volume of solution in litres. It can be given by the expression,
a)

Answer to Problem 32E
0.0200 mole of Sodium phosphate in 10.0 mL of solution.
Explanation of Solution
Record the given data
Moles of Sodium phosphate=
Volume of the solution=
Calculation for the concentration of separate ions is as follows,
The balanced equation for dissolving ions,
The molarity of ions can be calculated by the formula,
Therefore, by substituting the given info in the formula, the concentrations of separate ions can be given as,
In order, to find the concentration of the separate ion,
Therefore, the concentrations of separate ions can be given by,
The concentration of the individual ions is calculated by plugging in the values of molarity and number of atoms present in element. The concentration of individual
b)
Interpretation: The concentration of ions in the solution has to be calculated.
Concept Introduction: Concentration can be defined in terms of molarity as moles of solute per volume of solution in litres. It can be given by the expression,
b)

Answer to Problem 32E
0.300 mole of Barium nitrate in 600 mL of solution.
Explanation of Solution
Record the given data
Moles of Barium nitrate=
Volume of the solution=
Calculation for the concentration of separate ions is as follows,
The balanced equation for dissolving ions
The molarity of ions can be calculated by the formula,
Therefore, by substituting the given info in the formula, molarity can be calculated by,
In order, to find the concentration of the separate ion,
Therefore, the concentrations of separate ions can be given by,
The concentration of the individual ions is calculated by plugging in the values of molarity and number of atoms present in element. The concentration of individual
c)
Interpretation: The concentration of ions in the solution has to be calculated.
Concept Introduction: Concentration can be defined in terms of molarity as moles of solute per volume of solution in litres. It can be given by the expression,
c)

Answer to Problem 32E
1.00 g of Potassium chloride in 0.500 L of solution.
Explanation of Solution
Calculation
Record the given info
Mole of Potassium chloride=1.00 gram
Volume of solution= 0.500 L
for the concentration of individual ions is as follows,
The balanced equation can be given as,
In order to calculate molarity, grams are converted into moles by using the molar mass.
The molar mass can be calculated by sum of mass of individual elements.
Molar mass of Potassium chloride can be given as (1×40) + (1×35.5) =74.55 g/mol
Amount of Potassium chloride=
=
In order, to find the concentration of the separate ion,
Therefore, the concentrations of separate ions can be given by,
The concentration of the individual ions is calculated by plugging in the values of molarity and number of atoms present in element. The concentration of individual
d)
Interpretation: The concentration of ions in the solution has to be calculated.
Concept Introduction: Concentration can be defined in terms of molarity as moles of solute per volume of solution in litres. It can be given by the expression,
d)

Answer to Problem 32E
132 g of Ammonium sulphate in 1.50 L of solution.
Explanation of Solution
Record the given info
Mole of Ammonium sulphate=132 gram
Volume of solution=1.50L
Calculation for the concentration of individual ions is as follows,
The balanced equation for dissolving ions,
In order to calculate molarity, grams are converted into moles by using the molar mass.
The molar mass can be calculated by sum of mass of individual elements.
Molar mass of Ammonium sulphate is 132 g/mol
Therefore, from the amount of Ammonium sulphate, the molarity can be calculated as,
In order, to find the concentration of the separate ion,
Therefore, the concentrations of separate ions can be given by,
The concentration of the individual ions is calculated by plugging in the values of molarity and number of atoms present in element. The concentration of individual
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry: An Atoms First Approach
- A covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forwardWhich one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forward
- All of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forwardPredict the major products of this organic reaction:arrow_forward
- Name the family to which each organic compound belongs. The first answer has been filled in for you. compound CH₂ || CH3-C-NH2 0 ။ CH3-C-CH₂ CH=O–CH=CH, CH₂ HO CH2-CH2-CH-CH3 family amine Darrow_forward1b. Br LOHarrow_forwardI would like my graphs checked please. Do they look right? Do I have iodine and persulfate on the right axis ?arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning




