(a)
Interpretation:
The following skeletal equation has to be balanced using
Concept Introduction:
Net ionic equation:
Net ionic equation is defined as the specific species that only involves to a particular reaction. This type of equations is generally used in acid-base neutralization reactions and redox reactions.
Oxidizing agent:
The material which gains electron in a
Reducing agent:
The material, which loses electrons in a chemical reaction, is called reducing agent. In this reaction, the oxidation number will be increased.
(a)

Answer to Problem 6K.4E
The balanced reaction of the selenite ion with chlorate ion is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balancing the net charges by adding
Here, in left side, the net charge is
Therefore, the balanced reduction half-reaction is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by 2 each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
(b)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(b)

Answer to Problem 6K.4E
The balanced reaction of isopropanol with the action of dichromate ion is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by 2 each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
(c)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(c)

Answer to Problem 6K.4E
The balanced reaction of gold with selenic acid is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
(d)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(d)

Answer to Problem 6K.4E
The balanced reaction for the preparation of stibine from antimonic acid is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by 2 each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
Want to see more full solutions like this?
Chapter 6 Solutions
ACHIEVE/CHEMICAL PRINCIPLES ACCESS 1TERM
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning





