(a)
To express two vectors in unit vector notation.
(a)
Answer to Problem 67P
The two vectors in unit vector notation is
Explanation of Solution
Write the expression for force from Figure P6.67.
Simplify the above equation.
Write the expression for force from Figure P6.67.
Simplify the above equation.
Conclusion:
Therefore, the two vectors in unit vector notation is
(b)
The total force exerted on the object.
(b)
Answer to Problem 67P
The total force exerted on the object is
Explanation of Solution
Write the total force exerted on the object.
Use equation (I) and (II) in equation (III), to find the net force.
Conclusion:
Therefore, the total force exerted on the object is
(c)
The acceleration of the object.
(c)
Answer to Problem 67P
The acceleration of the object is
Explanation of Solution
Write the expression for acceleration of the object.
Here,
Use equation (IV) in (V).
Given that the mass of the object is
Rearrange the above equation.
Conclusion:
Therefore, the acceleration of the object is
(d)
The velocity of the object.
(d)
Answer to Problem 67P
The velocity of the object is
Explanation of Solution
Write the velocity of the object.
Here,
Conclusion:
Substitute
Therefore, the velocity of the object is
(e)
The position of the object at time
(e)
Answer to Problem 67P
The position of the object at
Explanation of Solution
Given that the initial position of the object is zero.
Write the expression for position using equation of motion.
Here,
Conclusion:
Substitute
Therefore, the position of the object at
(f)
The final kinetic energy of the object.
(f)
Answer to Problem 67P
The final kinetic energy of the object is
Explanation of Solution
Write the expression for kinetic energy.
Here,
From subpart (d) the final velocity vector is given by
Write the magnitude of final velocity vector.
Conclusion:
Substitute
Therefore, the final kinetic energy of the object is
(g)
The final kinetic energy of the object using the equation
(g)
Answer to Problem 67P
The final kinetic energy of the object using the equation
Explanation of Solution
Write the expression for kinetic energy.
From subpart (b) the net force
Apply the above condition in equation (XII).
Conclusion:
Substitute
Therefore, the final kinetic energy of the object using the equation
(h)
To compare the answers in subpart (f) and subpart (g).
(h)
Answer to Problem 67P
The answers in subpart (f) and subpart (g) is same, and it proves that the work energy theorem is consistent with the newton’s second law of motion.
Explanation of Solution
From subpart (f) and (g), the kinetic energy is obtained as
The work energy theorem states that the change in kinetic energy is equal to the external work done, and by rearranging the terms the final kinetic energy of the object is obtained in subpart (g).
Since the answers in subpart (g) and (f) are same, which proves that the work energy theorem is consistent with the newton’s second law of motion.
Conclusion:
Therefore, the answers in subpart (f) and subpart (g) is same, and it proves that the work energy theorem is consistent with the newton’s second law of motion.
Want to see more full solutions like this?
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
- The velocity of an elevator is given by the graph shown. Assume the positive direction is upward. Velocity (m/s) 3.0 2.5 2.0 1.5 1.0 0.5 0 0 5.0 10 15 20 25 Time (s) (a) Briefly describe the motion of the elevator. Justify your description with reference to the graph. (b) Assume the elevator starts from an initial position of y = 0 at t=0. Deriving any numerical values you need from the graph: i. Write an equation for the position as a function of time for the elevator from t=0 to t = 3.0 seconds. ii. Write an equation for the position as a function of time for the elevator from t = 3.0 seconds to t = 19 seconds. (c) A student of weight mg gets on the elevator and rides the elevator during the time interval shown in the graph. Consider the force of con- tact, F, between the floor and the student. How Justify your answer with reference to the graph does F compare to mg at the following times? and your equations above. i. = 1.0 s ii. = 10.0 sarrow_forwardStudents are asked to use circular motion to measure the coefficient of static friction between two materials. They have a round turntable with a surface made from one of the materials, for which they can vary the speed of rotation. They also have a small block of mass m made from the sec- ond material. A rough sketch of the apparatus is shown in the figure below. Additionally they have equipment normally found in a physics classroom. Axis m (a) Briefly describe a procedure that would allow you to use this apparatus to calculate the coefficient of static friction, u. (b) Based on your procedure, determine how to analyze the data collected to calculate the coefficient of friction. (c) One group of students collects the following data. r (m) fm (rev/s) 0.050 1.30 0.10 0.88 0.15 0.74 0.20 0.61 0.25 0.58 i. Use the empty spaces in the table as needed to calculate quantities that would allow you to use the slope of a line graph to calculate the coefficient of friction, providing labels with…arrow_forwardPART Aarrow_forward
- answer both questionarrow_forwardOnly part A.) of the questionarrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forward
- In general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, −3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardOnly Part C.) is necessaryarrow_forwardOnly Part B.) is necessaryarrow_forward
- A (3.60 m) 30.0°- 70.0° x B (2.40 m)arrow_forwardIn general it is best to conceptualize vectors as arrows in space, and then to make calculations with them using their components. (You must first specify a coordinate system in order to find the components of each arrow.) This problem gives you some practice with the components. Let vectors A = (1,0, -3), B = (-2, 5, 1), and C = (3,1,1). Calculate the following, and express your answers as ordered triplets of values separated by commas.arrow_forwardfine the magnitude of the vector product express in sq meters what direction is the vector product in -z or +zarrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning