Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 50P
To determine
The amount of energy required to move
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The International Space Station (ISS) has a mass of about 441,000 kg and orbits at a height of about 4.0 x 105 meters above the surface of Earth.
If the average U.S. household uses about 40 billion joules (4.0 x 1010 J) of energy in a year, how many households could be powered for a year by the gravitational potential energy stored in the ISS?
(The height of the ISS above Earth's surface is small enough that you can still use mgh as a reasonable approximation to calculate the gravitational potential energy.)
As it orbits Earth, the 11,000-kg Hubble Space Telescope travels at a speed of 7,900 m/s and is 560,000 m above Earth's surface.
What is its potential energy? (Assume that the Hubble Space Telescope is close enough to Earth that its acceleration due to gravity is
g = 9.8 m/s2.
Take the potential energy relative to the surface of Earth.)
As it orbits Earth, the 11,000-kg Hubble Space Telescope travels at a speed of 7,900 m/s and is 560,000 m above Earth's surface.
(a) What is its kinetic energy?J(b) What is its potential energy? (Assume that the Hubble Space Telescope is close enough to Earth that its acceleration due to gravity is
g = 9.8 m/s2.
Take the potential energy relative to the surface of Earth.)J
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 6.2 - Prob. 6.1QQCh. 6.2 - Prob. 6.2QQCh. 6.3 - Which of the following statements is true about...Ch. 6.4 - Prob. 6.4QQCh. 6.5 - A dart is inserted into a spring-loaded dart gun...Ch. 6.6 - Choose the correct answer. The gravitational...Ch. 6.6 - A ball is connected to a light spring suspended...Ch. 6.8 - What does the slope of a graph of U(x) versus x...Ch. 6 - Alex and John are loading identical cabinets onto...Ch. 6 - Prob. 2OQ
Ch. 6 - Prob. 3OQCh. 6 - Prob. 4OQCh. 6 - Prob. 5OQCh. 6 - As a simple pendulum swings back and forth, the...Ch. 6 - A block of mass m is dropped from the fourth floor...Ch. 6 - If the net work done by external forces on a...Ch. 6 - Prob. 9OQCh. 6 - Prob. 10OQCh. 6 - Prob. 11OQCh. 6 - Prob. 12OQCh. 6 - Prob. 13OQCh. 6 - Prob. 14OQCh. 6 - Prob. 15OQCh. 6 - An ice cube has been given a push and slides...Ch. 6 - Prob. 1CQCh. 6 - Discuss the work done by a pitcher throwing a...Ch. 6 - A certain uniform spring has spring constant k....Ch. 6 - (a) For what values of the angle between two...Ch. 6 - Prob. 5CQCh. 6 - Cite two examples in which a force is exerted on...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQCh. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 1PCh. 6 - A raindrop of mass 3.35 105 kg falls vertically...Ch. 6 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 6 - Prob. 4PCh. 6 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - A force F=(6j2j)N acts on a particle that...Ch. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - The force acting on a particle varies as shown in...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - When a 4.00-kg object is hung vertically on a...Ch. 6 - A small particle of mass m is pulled to the top of...Ch. 6 - A light spring with spring constant 1 200 N/m is...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - The force acting on a particle is Fx = (8x 16),...Ch. 6 - A force F=(4xi+3yj), where F is in newtons and x...Ch. 6 - Prob. 26PCh. 6 - A 6 000-kg freight car rolls along rails with...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - A 3.00-kg object has a velocity (6.00i1.00j)m/s....Ch. 6 - Prob. 32PCh. 6 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - A 4.00-kg particle moves from the origin to...Ch. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - A baseball outfielder throws a 0.150-kg baseball...Ch. 6 - Why is the following situation impossible? In a...Ch. 6 - An inclined plane of angle = 20.0 has a spring of...Ch. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A system consists of five particles. How many terms appear in the expression for the total gravitational potential energy of the system? (a) 4 (b) 5 (c) 10 (d) 20 (e) 25arrow_forwardRank the following quantities of energy from largest to the smallest. State if any are equal. (a) the absolute value of the average potential energy of the SunEarth system (b) the average kinetic energy of the Earth in its orbital motion relative to the Sun (c) the absolute value of the total energy of the SunEarth systemarrow_forwardFind the escape speed of a projectile from the surface of Mars.arrow_forward
- Find the escape speed of a projectile from the surface of Jupiter.arrow_forwardA spaceship needs a lot of fuel to reach the geostationary orbit. Compute the required height for a geostationary orbit and the potential energy for one kilogram (the potential of the geostationary orbit). Compare that value to the energy content of rocket fuels, i.e. energy per kilogram. What is the potential to leave our planet completely?arrow_forwardHow much energy is required to lift the 9000-kg Soyuz vehicle from Earth's surface to the height of the ISS, 400 km above the surface? (3.32 x 1010 J)arrow_forward
- Do fast and get likearrow_forwardHow much work is required to lift a 500-kg satellite to an altitude of 3⋅10^6 m above the surface of the Earth? The gravitational force is F=GMm/r^2, where M is the mass of the Earth, m is the mass of the satellite, and r is the distance between the satellite and the Earth's center. The radius of the Earth is 6.4⋅10^6 m, its mass is 6⋅10^24 kg, and in these units the gravitational constant, G, is 6.67⋅10^−11. Work= (include units)arrow_forwardA meteor falls toward Earth’s surface. Given that the acceleration due to gravity is 9.8 m/s2, what is the meteor’s potential energy if it has a mass of 10 kg at an altitude of 400 m?arrow_forward
- The star Sirus A has a mass of 2.06 MO and a radius of 1.71 RO, where M0 is the mass of the Sun (1.988 x 1030 kg) and RO is the radius of the Sun (6.96 x 105 km). (a) Sketch the gravitational potential of Sirus A, which a hydrogen particle would experience at distances where r is greater than the radius of Sirus A. (b) Calculate the gravitational potential energy of the particle-star system when the hydrogen particle has reached a distance of 10 RO. Note the atomic mass of hydrogen is 1.0079 amu.arrow_forwardYou have an object of mass 1,205 kg, that is a distance 1.0 m above the ground. If we call the ground a height 0, what is the gravitational potential energy of the object (measured in Joules)? Your Answer: Answerarrow_forwardThe International Space Station, which has a mass of 4.65×105 kg, orbits 255 miles above the Earth's surface, and completes one orbit every 92.4 minutes. What is the kinetic energy of the International Space Station in units of GJ (109 Joules)? (Note: don't forget to take into account the radius of the Earth: r_{Earth} = 3959 miles)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY