Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 65P

(a)

To determine

The extension of the spring for a mass of m.

(a)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for a mass of m is x=4π2mL0/T2k4π2mL0/T2_.

Explanation of Solution

Write the expression for centripetal force of the mass m attached at the end of the spring.

    F=mv2r        (I)

Here, F is the centripetal force, m is the mass, v is the velocity, r is the radius of the orbit.

Write the expression for velocity in terms of time period.

    v=2πrT        (II)

Here, v is the velocity, r is the radius of the orbit, and T is the time period.

Write the expression for force from hooks law.

    F=kx        (III)

Here, F is the force, k is the spring constant, and x is the distance.

Use equation (II) and (III) in equation (I) and rearrange.

    kx=m(2πrT)2rkT2x=4π2mr        (IV)

Write the expression for radius of the pluck’s motion.

    r=L0+x        (V)

Use equation (V) in equation (IV), to find x.

    kT2x=4π2m(L0+x)kx=(4π2mL0)T2+x(4π2m)T2x(k4π2mT2)=4π2mL0T2x=4π2mL0/T2k4π2mL0/T2        (VI)

Conclusion:

Therefore, the extension of the spring for a mass of m is x=4π2mL0/T2k4π2mL0/T2_.

(b)

To determine

The extension of the spring for the mass 0.0700kg.

(b)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.0700kg is 0.0951m_.

Explanation of Solution

Substitute 4.30N/m for k, 0.155m for L0, 1.30s for T, in equation (VI), to find x.

    x=4(3.14)2(0.155m)m/(1.30s)24.30N/m4(3.14)2m(0.155m)/(1.30s)2=(3.62m/s2)m4.30kg/s2(23.361/s2)m=(3.62m)m[4.30kg(23.36)]m1/s21/s2=(3.62m)m4.30kg(23.4)m        (VII)

Conclusion:

Substitute 0.070kg for m in equation (VII), to find x.

    x=(3.62m)(0.070kg)4.30kg(23.4)(0.070kg)=0.0951m

Therefore, the extension of the spring for the mass 0.0700kg is 0.0951m_.

(c)

To determine

The extension of the spring for the mass 0.140kg.

(c)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.140kg is 0.492m_.

Explanation of Solution

From equation (VII).

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.140kg for m in equation (VII), to find x.

    x=(3.62m)(0.140kg)4.30kg(23.36)(0.140kg)=0.492m

Therefore, the extension of the spring for the mass 0.140kg is 0.492m_.

(d)

To determine

The extension of the spring for the mass 0.180kg.

(d)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring for the mass 0.180kg is 6.85m_.

Explanation of Solution

From equation (VII).

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.180kg for m in equation (VII), to find x.

    x=(3.62m)(0.180kg)4.30kg(23.36)(0.180kg)=0.6520.0952m=6.85m

Therefore, the extension of the spring for the mass 0.180kg is 6.85m_.

(e)

To determine

The extension of the spring for the mass 0.190kg.

(e)

Expert Solution
Check Mark

Answer to Problem 65P

For the mass 0.190kg the spring cannot constrain the motion, this situation is impossible.

Explanation of Solution

From equation (VII) the spring extension is given by

    x=(3.62m)m4.30kg(23.4)m

Conclusion:

Substitute 0.190kg for m in equation (VII), to find x.

    x=(3.62m)(0.190kg)4.30kg(23.36)(0.190kg)=0.6520m=

Therefore, For the mass 0.190kg the extension of the spring goes to infinity. The spring cannot constrain the motion, this situation is impossible

(f)

To determine

To explain the pattern of variation of x as it depends on m.

(f)

Expert Solution
Check Mark

Answer to Problem 65P

The extension of the spring is directly proportional to the mass m for the mass in few grams. For the mass 0.184kg and more the extension starts to diverge to infinity.

Explanation of Solution

The extension of the spring is directly proportional to the mass m, for the lighter mass in few grams. When the mass is further more increased from 0.184kg the extension starts to diverge to infinity.

Conclusion:

Therefore, the extension of the spring is directly proportional to the mass m for the mass in few grams. For the mass 0.184kg and more the extension starts to diverge to infinity.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A solid sphere 22 cm in radius carries 17 μC, distributed uniformly throughout its volume. Part A Find the electric field strength 12 cm from the sphere's center. Express your answer using two significant figures. E₁ = ΜΕ ΑΣΦ ха Хь b Submit Previous Answers Request Answer <☑ × Incorrect; Try Again; 4 attempts remaining ▾ Part B ? |X| X.10" <☑ Find the electric field strength 22 cm from the sphere's center. Express your answer using two significant figures. ΜΕ ΑΣΦ E2 = Submit Request Answer ▾ Part C ? MN/C Find the electric field strength 44 cm from the sphere's center. Express your answer using two significant figures. ΕΠΙ ΑΣΦ E3 = Submit Request Answer ? MN/C MN/C
No chatgpt pls
In a naval battle, a battleship is attempting to fire on a destroyer. The battleship is a distance d1 = 2,150 m to the east of the peak of a mountain on an island, as shown in the figure below. The destroyer is attempting to evade cannon shells fired from the battleship by hiding on the west side of the island. The initial speed of the shells that the battleship fires is vi = 245 m/s. The peak of the mountain is h = 1,840 m above sea level, and the western shore of the island is a horizontal distance d2 = 250 m from the peak. What are the distances (in m), as measured from the western shore of the island, at which the destroyer will be safe from fire from the battleship? (Note the figure is not to scale. You may assume that the height and width of the destroyer are small compared to d1 and h.)

Chapter 6 Solutions

Principles of Physics: A Calculus-Based Text

Ch. 6 - Prob. 3OQCh. 6 - Prob. 4OQCh. 6 - Prob. 5OQCh. 6 - As a simple pendulum swings back and forth, the...Ch. 6 - A block of mass m is dropped from the fourth floor...Ch. 6 - If the net work done by external forces on a...Ch. 6 - Prob. 9OQCh. 6 - Prob. 10OQCh. 6 - Prob. 11OQCh. 6 - Prob. 12OQCh. 6 - Prob. 13OQCh. 6 - Prob. 14OQCh. 6 - Prob. 15OQCh. 6 - An ice cube has been given a push and slides...Ch. 6 - Prob. 1CQCh. 6 - Discuss the work done by a pitcher throwing a...Ch. 6 - A certain uniform spring has spring constant k....Ch. 6 - (a) For what values of the angle between two...Ch. 6 - Prob. 5CQCh. 6 - Cite two examples in which a force is exerted on...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQCh. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 1PCh. 6 - A raindrop of mass 3.35 105 kg falls vertically...Ch. 6 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 6 - Prob. 4PCh. 6 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - A force F=(6j2j)N acts on a particle that...Ch. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - The force acting on a particle varies as shown in...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - When a 4.00-kg object is hung vertically on a...Ch. 6 - A small particle of mass m is pulled to the top of...Ch. 6 - A light spring with spring constant 1 200 N/m is...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - The force acting on a particle is Fx = (8x 16),...Ch. 6 - A force F=(4xi+3yj), where F is in newtons and x...Ch. 6 - Prob. 26PCh. 6 - A 6 000-kg freight car rolls along rails with...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - A 3.00-kg object has a velocity (6.00i1.00j)m/s....Ch. 6 - Prob. 32PCh. 6 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - A 4.00-kg particle moves from the origin to...Ch. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - A baseball outfielder throws a 0.150-kg baseball...Ch. 6 - Why is the following situation impossible? In a...Ch. 6 - An inclined plane of angle = 20.0 has a spring of...Ch. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY