(a)
The extension of the spring for a mass of
(a)
Answer to Problem 65P
The extension of the spring for a mass of
Explanation of Solution
Write the expression for
Here,
Write the expression for velocity in terms of time period.
Here,
Write the expression for force from hooks law.
Here,
Use equation (II) and (III) in equation (I) and rearrange.
Write the expression for radius of the pluck’s motion.
Use equation (V) in equation (IV), to find
Conclusion:
Therefore, the extension of the spring for a mass of
(b)
The extension of the spring for the mass
(b)
Answer to Problem 65P
The extension of the spring for the mass
Explanation of Solution
Substitute
Conclusion:
Substitute
Therefore, the extension of the spring for the mass
(c)
The extension of the spring for the mass
(c)
Answer to Problem 65P
The extension of the spring for the mass
Explanation of Solution
From equation (VII).
Conclusion:
Substitute
Therefore, the extension of the spring for the mass
(d)
The extension of the spring for the mass
(d)
Answer to Problem 65P
The extension of the spring for the mass
Explanation of Solution
From equation (VII).
Conclusion:
Substitute
Therefore, the extension of the spring for the mass
(e)
The extension of the spring for the mass
(e)
Answer to Problem 65P
For the mass
Explanation of Solution
From equation (VII) the spring extension is given by
Conclusion:
Substitute
Therefore, For the mass
(f)
To explain the pattern of variation of
(f)
Answer to Problem 65P
The extension of the spring is directly proportional to the mass
Explanation of Solution
The extension of the spring is directly proportional to the mass
Conclusion:
Therefore, the extension of the spring is directly proportional to the mass
Want to see more full solutions like this?
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
- 2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forwardFrom number 2 and 3 I just want to show all problems step by step please do not short cut look for formulaarrow_forward
- Look at the answer and please show all work step by steparrow_forward3. As a woman, who's eyes are h = 1.5 m above the ground, looks down the road sees a tree with height H = 9.0 m. Below the tree is what appears to be a reflection of the tree. The observation of this apparent reflection gives the illusion of water on the roadway. This effect is commonly called a mirage. Use the results of questions 1 and 2 and the principle of ray reversibility to analyze the diagram below. Assume that light leaving the top of the tree bends toward the horizontal until it just grazes ground level. After that, the ray bends upward eventually reaching the woman's eyes. The woman interprets this incoming light as if it came from an image of the tree. Determine the size, H', of the image. (Answer 8.8 m) please show all work step by steparrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning