Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 56P
(a)
To determine
The power used per unit area by the family.
(b)
To determine
The power used per unit area by the car.
(c)
To determine
To explain why direct use of solar energy is not practically used for running conventional automobile.
(d)
To determine
The practical uses of solar energy.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Astronomers using a 2.0-mm-diameter telescope observe a distant supernova−−an exploding star. The telescope's detector records 7.9 ×10-11 JJ of light energy during the first 10 s. It's known that this type of supernova has a visible-light power output of 6.0 ×1037 W for the first 10 s of the explosion.How distant is the supernova? Give your answer in light years, where one light year is the distance light travels in one year. The speed of light is 3.0 ×108 m/s
In a hydroelectric dam, water falls 30.0 mm and then spins a turbine to generate electricity.
You may want to review (Pages 234 - 238) .
What is ΔUΔUDeltaU of 1.0 kg of water?
Express your answer with the appropriate units.
Suppose the dam is 80% efficient at converting the water's potential energy to electrical energy. How many kilograms of water must pass through the turbines each second to generate 51.0 MWMW of electricity? This is a typical value for a small hydroelectric dam.
Express your answer using three decimal places.
A family uses 8 kW of power, (a) Direct solar energy is incident on the horizontal surface at an average rate of 200 W per square meter. If 20% of this energy can be converted to useful electrical energy, how large an area is needed to supply 8 kW? (b) Compare this area to that of the roof of a typical house.
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 6.2 - Prob. 6.1QQCh. 6.2 - Prob. 6.2QQCh. 6.3 - Which of the following statements is true about...Ch. 6.4 - Prob. 6.4QQCh. 6.5 - A dart is inserted into a spring-loaded dart gun...Ch. 6.6 - Choose the correct answer. The gravitational...Ch. 6.6 - A ball is connected to a light spring suspended...Ch. 6.8 - What does the slope of a graph of U(x) versus x...Ch. 6 - Alex and John are loading identical cabinets onto...Ch. 6 - Prob. 2OQ
Ch. 6 - Prob. 3OQCh. 6 - Prob. 4OQCh. 6 - Prob. 5OQCh. 6 - As a simple pendulum swings back and forth, the...Ch. 6 - A block of mass m is dropped from the fourth floor...Ch. 6 - If the net work done by external forces on a...Ch. 6 - Prob. 9OQCh. 6 - Prob. 10OQCh. 6 - Prob. 11OQCh. 6 - Prob. 12OQCh. 6 - Prob. 13OQCh. 6 - Prob. 14OQCh. 6 - Prob. 15OQCh. 6 - An ice cube has been given a push and slides...Ch. 6 - Prob. 1CQCh. 6 - Discuss the work done by a pitcher throwing a...Ch. 6 - A certain uniform spring has spring constant k....Ch. 6 - (a) For what values of the angle between two...Ch. 6 - Prob. 5CQCh. 6 - Cite two examples in which a force is exerted on...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Prob. 9CQCh. 6 - Prob. 10CQCh. 6 - Prob. 11CQCh. 6 - Prob. 12CQCh. 6 - Prob. 1PCh. 6 - A raindrop of mass 3.35 105 kg falls vertically...Ch. 6 - A block of mass m = 2.50 kg is pushed a distance d...Ch. 6 - Prob. 4PCh. 6 - Spiderman, whose mass is 80.0 kg, is dangling on...Ch. 6 - Prob. 6PCh. 6 - Prob. 7PCh. 6 - Prob. 8PCh. 6 - A force F=(6j2j)N acts on a particle that...Ch. 6 - Prob. 10PCh. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - The force acting on a particle varies as shown in...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - When a 4.00-kg object is hung vertically on a...Ch. 6 - A small particle of mass m is pulled to the top of...Ch. 6 - A light spring with spring constant 1 200 N/m is...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - The force acting on a particle is Fx = (8x 16),...Ch. 6 - A force F=(4xi+3yj), where F is in newtons and x...Ch. 6 - Prob. 26PCh. 6 - A 6 000-kg freight car rolls along rails with...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - Prob. 30PCh. 6 - A 3.00-kg object has a velocity (6.00i1.00j)m/s....Ch. 6 - Prob. 32PCh. 6 - A 0.600-kg particle has a speed of 2.00 m/s at...Ch. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - Prob. 36PCh. 6 - Prob. 37PCh. 6 - Prob. 38PCh. 6 - Prob. 39PCh. 6 - Prob. 40PCh. 6 - Prob. 41PCh. 6 - A 4.00-kg particle moves from the origin to...Ch. 6 - Prob. 43PCh. 6 - Prob. 44PCh. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - Prob. 47PCh. 6 - Prob. 48PCh. 6 - Prob. 49PCh. 6 - Prob. 50PCh. 6 - Prob. 51PCh. 6 - Prob. 52PCh. 6 - Prob. 53PCh. 6 - Prob. 54PCh. 6 - Prob. 55PCh. 6 - Prob. 56PCh. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - A baseball outfielder throws a 0.150-kg baseball...Ch. 6 - Why is the following situation impossible? In a...Ch. 6 - An inclined plane of angle = 20.0 has a spring of...Ch. 6 - Prob. 62PCh. 6 - Prob. 63PCh. 6 - Prob. 64PCh. 6 - Prob. 65PCh. 6 - Prob. 66PCh. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Prob. 69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) What is the average power consumption in watts of an appliance that uses 5.00 kW h of energy per day? (b) How many joules of energy does this appliance consume in a year?arrow_forward(a) What is the available energy content, in joules, of a battery that operates a 2.00-W electric clock for 18 months? (b) How long can a battery that can supply 8.00104 J run a pocket calculator that consumes energy at the rate of 1.00103 ?arrow_forwardYou are renting a car to take a road trip from Ottawa to Halifax, about 1400 km. The car rental agency will allow you to choose either the gas or electric version of certain car model and the mileage fee is the same for both. If you choose the electric vehicle, you will need to do about 200 km extra driving since you need to stray from the main route to find electric charging stations. Assume the effective energy prices are constant at $0.108/MJ for gas and $0.063/MJ for electric. Further assume that the force due to rolling resistance is 260 N and the force due to air drag is 270 N. What total price in dollars will you pay for energy for each of the car types to overcome just these two forces while making this trip? Question 31 options: $15.12 for gas and $10.08 for electric $80.14 for gas and $53.42 for electric $40.82 for gas and $27.22 for electric $80.14 for gas and $46.75 for electricarrow_forward
- Water flows over a section of Niagara Falls at a rate of 1.30 × 106 kg/s and falls 52.0 m. What is the power dissipated by the waterfall? 6.6E+8 W 6.8E+7 W O 4.0E+7 W O 5.3E+8 W O 8.6E+6 Warrow_forward1. (a) What is the available energy content, in joules, of a battery that operates a 2.00-W electric clock for 18 months? (b) How long can a battery that can supply 8.00 × 104 J run a pocket calculator that consumes energy at the rate of 1.00 × 10−3 W? 2. Albertine finds herself in a very odd contraption. She sits in a reclining chair, in front of a large, compressed spring. The spring, with spring constant k = 95.0 N/m, is compressed 5.00 m from its equilibrium position, and a glass sits 19.8 m from her outstretched foot. (a) What is Albertine's initial potential energy before the spring is released? (b) Assuming that Albertine's mass is 60.0 kg, for what value of μk, the coefficient of kinetic friction between the chair and the waxed floor, does she just reach the glass without knocking it over? (c) The principle of conservation of energy states that energy is neither created nor destroyed. Describe the transformation of energy in this problem.arrow_forwardA 60-hp electric motor (a motor that delivers 60 hp of shaft power at full load) that has an efficiency of 89.0 percent is worn out and is to be replaced by a 93.2 percent efficient high-efficiency . The motor operates 3500 hours a year at full load. Taking the unit cost of electricity to be $0.08/kWh, determine the amount of energy and money saved as a result of installing the high-efficiency motor instead of the standard motor. Also, determine the simple payback period if the purchase prices of the standard and high-efficiency motors are $4520 and $5160, respectively.arrow_forward
- The total consumption of electrical energy in the United States is about 1.0 1019 joules per year. What is the average rate of electrical energy consumption in watts? If the population of the United States is 300 million, what is the average rate of electrical energy consumption per person? The sun transfers energy to the earth by radiation at a rate of approximately 1.0 kW per square meter of surface. If this energy could be collected and converted to electrical energy with 40 % efficiency, how great an area (in square kilometers) would be required to collect the electrical energy used by the United States?arrow_forwardA light bulb has a power of 300W. What is the energy dissipated by it in 5 minutes? Select one: a. 90J b. 1000J O c. 90kJ d. 1kJ e. Nonearrow_forwardThe metabolic power for typing is 150 W for bob. For how long would bob have to type to use all the energy available in a typical fast food meal of burger, fries, and a drink, which the meal energy content is 5660 kJ (1350 food calorie), in hours?arrow_forward
- Practicearrow_forwardExplanation MUST be typed or digitally illustrated! The human brain consumes about 22 W of power under normal conditions, though more power may be consumed during exams. (a) For what amount of time can one Snickers bar ([Note: The nutritional. calorie, 1 Cal, is equivalent to 1000 calories (1000 cal) as defined. in physics. In addition, the conversion factor between calories and joules is as follows: 1 Cal = 1000 cal = 1 kcal = 4184 J.]) power the normally functioning brain? (b) At what rate must you lift a 3.6 kg. container of milk ( one gallon) if the power output of your arm is to be 22 W? (c) How much time does it take to lift the milk container through a distance of 1.0 m at this rate?arrow_forwardA family in Charlotte wants to drive to a campsite next to Mt. Mitchell. Their trip will take them 2km up in elevation. They have the choice of taking their Tesla (EV), which when fully charged has 100 kWh of stored energy in the batteries (and for this problem is 100% efficient at converting its stored energy into kinetic energy) and a mass of 2200kg, or their choice of taking their Ford F-150. Gasoline has an energy density of 34.2 Megajoules per liter. The Ford's fuel tank contains 23 gallons. Assume the Ford’s engine is able to convert 30% of the energy stored in its gasoline tank into kinetic energy (typical efficiency for gasoline engines), with the rest of the stored energy in the gasoline lost to heat. The mass of the Ford is about 2000kg. They are going to tow their big pop-up trailer to the campsite. For this question, assume that each vehicle must use a combined 79 kWh of energy to combat the wind resistance of moving at 75 mph with the trailer for the whole drive, and to…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY