Concept explainers
(a)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The second species has negative charge whereas the first species is uncharged. A negatively charged species is less stable than the uncharged species; hence the negatively charged species is more basic than the uncharged species. Therefore, the stronger base in given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(b)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is neutral, and the second is positively charged. The neutral species can easily abstract protons as it has two lone pairs whereas the second species has no lone pair to abstract a proton. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(c)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
In the first species, the negative charge is on the
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(d)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species has an oxygen atom and second species has an N atom. The nitrogen atom is less electronegative than oxygen and can easily donate a lone pair. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(e)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species has a negatively charged nitrogen atom whereas the second species has a negatively charged P atom. The phosphorus atom is less electronegative than nitrogen. The species having a negative charge on less electronegative atom is more basic. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(f)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is more stable due to resonance; it shows the delocalization of the negative charge and makes the species more acidic, whereas, the second species does not show the resonance effect, making it more basic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(g)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The first species is more stable due to resonance; it shows the delocalization of the negative charge and makes the species more acidic, whereas the second species does not show resonance effect, making it more basic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(h)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
Both the species have the resonance effect but presence of five electronegative F atoms in the second species makes it more stable and therefore more acidic than the first species. Therefore, the stronger base in the given pair of species is
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
(i)
Interpretation:
The stronger base from the given pair of species is to be predicted.
Concept introduction:
According to the Bronsted Lowry theory, a base is the species that accepts a proton by donating its lone pair of electrons. A negatively charged species is less stable than uncharged species; hence the negatively charged species is more basic. The negative charge on the less electronegative atom makes it a stronger base. Resonance can stabilize a negatively charged species and make it a weaker base. Electron donating group, which is less electronegative than hydrogen, stabilizes the positive charge but destabilizes a nearby negative charge and makes the species more basic. The neutral species may easily abstract protons due to the lone pair and may become more basic than the positively charged species. A positive charge is energetically favored on the atom with the lower effective electronegativity, i.e.,

Answer to Problem 6.64P
The stronger base in the given pair of species is
Explanation of Solution
The given pair of species is
The negative charge on the first species is in complete conjugation, making it more stable and increasing the acidity. The negative charge on the second species shows conjugation, but there is no
The stronger base from the given pair of species is predicted on the basis of factors affecting charge stability.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK ORGANIC CHEMISTRY: PRINCIPLES AND M
- In the decomposition reaction in solution B → C, only species C absorbs UV radiation, but neither B nor the solvent absorbs. If we call At the absorbance measured at any time, A0 the absorbance at the beginning of the reaction, and A∞ the absorbance at the end of the reaction, which of the expressions is valid? We assume that Beer's law is fulfilled.arrow_forward> You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Consider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forwardWhat is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward
- 7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward7 Comment on the general features of the predicted (extremely simplified) ¹H- NMR spectrum of lycopene that is provided below. 00 6 57 PPM 3 2 1 0arrow_forwardIndicate the compound formula: dimethyl iodide (propyl) sulfonium.arrow_forward
- Organic Chemistry: A Guided InquiryChemistryISBN:9780618974122Author:Andrei StraumanisPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning


