Concept explainers
The inductors in Fig. 6.87 are initially charged and are connected to the black box at t = 0. If i1(0) = 4 A, i2(0) = −2 A, and v(t) = 50e−200t mV, t ≥ 0, find:
- (a) the energy initially stored in each inductor,
- (b) the total energy delivered to the black box from t = 0 to t = ∞,
- (c) i1(t) and i2(t), t ≥ 0,
- (d) i(t), t ≥ 0.
Figure 6.87
For Prob. 6.65.
(a)
Calculate the initial energy stored in each inductor for the given initial conditions.
Answer to Problem 65P
The energy stored initially in each inductor
Explanation of Solution
Given data:
The Black box connects across the initially charged inductors at
The initial current of inductor
The initial current of inductor
The voltage across the inductors and black box is same. That is,
Formula used:
Write the formula to find the energy stored in an inductor.
Calculation:
Re-draw the given figure as shown in Figure 1.
Using the formula in equation (1), the energy stored initially in inductor
Substitute
Using the formula in equation (1), the energy stored initially in inductor
Substitute
Conclusion:
Thus, the energy stored initially in each inductor
(b)
Calculate the total energy delivered to the black box by the inductors for
Answer to Problem 65P
The total energy delivered to the black box by the inductors is
Explanation of Solution
Given data:
Refer to Part (a).
Formula used:
Write the formula to find the total energy delivered to the black box by the inductors from
Here,
Calculation:
The total energy delivered to the black box in period of
Substitute
Conclusion:
Thus, the total energy delivered to the black box by the inductors is
(c)
Calculate the currents in each inductor for the period of
Answer to Problem 65P
The currents
Explanation of Solution
Given data:
Refer to Part (a).
Formula used:
Write the formula to find the current through an inductor.
Here,
Calculation:
Using the formula in equation (3), the current through an inductor
Since the black box and both inductors are in parallel,
Substitute
In the Figure 1, currents
From Figure 2, the current
Substitute
Reduce the equation as follows.
Using the formula in equation (3), the current
Substitute
Consider reversing polarities for voltage
Substitute
Reduce the equation as follows.
Conclusion:
Thus, the currents
(d)
Find the current
Answer to Problem 65P
The current
Explanation of Solution
Given data:
Refer to part (a).
Formula used:
Write the formula for the current
Here,
Calculation:
Refer to part (c), the currents
Substitute
Conclusion:
Thus, the current
Want to see more full solutions like this?
Chapter 6 Solutions
Fundamentals of Electric Circuits
- At t= 0, a 2.3 uF capacitance is pre-charged to an unknown voltage V. The capacitance is in parallel with a 4 k2 resistance. For t>0 the capacitor is disconnected from the charging source and allowed to discharge into the resistor. At t = 2 ms, the voltage across the capacitance is 10 V. Calculate the value of V (V).arrow_forwardAn (open) electric circuit consists of an inductor, a resistor, and a capacitor. There is an initial charge of 2 coulombs on the capacitor. At the instant the circuit is closed, a current of 3 amperes is present and a voltage of E(t) = 20 cos t is applied. In this circuit the voltage drop across the resistor is 4 times the instantaneous change in the charge, the voltage drop across the capacitor is 10 times the charge, and the voltage drop across the inductor is 2 times the instantaneous change in the current. Write an initial value problem to model the circuit.arrow_forward2arrow_forward
- A 100 μF capacitor initially charged to 24 V is discharge across a series combination of a 1 kΩ resistor and a 200 μF capacitor. Find the current after 1 sec.arrow_forwardI know it is easy. I just want confirmation.arrow_forwardA capacitor that is initially uncharged is connected in series with a resistor and a 300.0 V emf source with negligible internal resistance. Just after the circuit is completed, the current through the resistor is 0.950 mA and the time constant for the circuit is 6.00 s. (A) What is the resistance of the resistor? (B) What is the capacitance of the capacitor?arrow_forward
- If two identical inductors are magnetically coupled, the mutual inductance is 10 mH and the coefficient of coupling is 0.4. Find the self – inductance of the identical inductors.arrow_forwardA 20-mH inductor and a 18-mH inductor are connected in series with a 3-A current source. Find (a) the equivalent inductance and (b) the total energy stored. (a) mH (b) mJarrow_forwardCapacitors are fundamental electrical components that store energy in the form of an electric field. They consist of two conductors separated by an insulator, known as a dielectric. When a voltage is applied to the capacitor terminals, it accumulates opposite charges on the conductors, creating an electric field between them. What is the total capacitance (C) in farads (F) between terminals A and B in the capacitor arrangement present in the circuit below?arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,