A First Course in Probability
9th Edition
ISBN: 9780321794772
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 6, Problem 6.56P
(a)
To determine
To compute: Joint density of U and V.
(b)
To determine
To compute: Joint density of U,V.
(c)
To determine
To compute: Joint density of bothU and V.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let X and Y be independent uniform random variables on (0,1).
a) Find the variance of Z1=min(X,Y).
b) Find the variance of Z2 = max(X,Y).
Let X ~ N(0, 2) and Y ~
covariances Cov(X,Y) and Cov(Y, X +Y).
Exp(A = 3) be two uncorrelated random variables. Find the
The 4-dimensional random vector X has PDF fX(x)={1 when 0≤xi≤1, i=1,2,3,4 and 0 otherwise}. Are the for components of X independent random variables?
Chapter 6 Solutions
A First Course in Probability
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.45PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.48PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Verify equation (1.2).Ch. 6 - Suppose that the number of events occurring in a...Ch. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Verify equation (6.6), which gives the joint...Ch. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.34TECh. 6 - Prob. 6.35TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...
Knowledge Booster
Similar questions
- Let X and Y be random variables having the same distribution. Show that Cov(X +Y, X – Y) = 0.arrow_forwardLet X1, X2, · · · , Xn be uniform i.i.d. random variables between [0, 1].Find the CDF and PDF of X = min(X1, X2, · · · , Xn)arrow_forwardIf X is a continuous random variable find the CDF and density of the function y = x/3arrow_forward
- Prove that cov(X, Y) = cov(Y, X) for both discreteand continuous random variables X and Y.arrow_forwardLet X, Y, and Z be independent standard normal random variables. Find the probability density functions ofeach of the following random variables:a) X^2;b) X^2 + Y^2;c) X + Y + Z.arrow_forwardLet the joint density of random variables x and y be given by the following: fx,y(x, y) = 0.158(x + 1)8(y) + 0.18(x)8(y) + 0.18(x)8(y-2) +0.48(x - 1)8(y + 2) +0.28(x - 1)8(y-1) + 0.058(x - 1)8(y - 3) a) Determine the marginal density x and y of this joint density. b) Are these random variables statistically independent? Justify your answer. c) Find the marginal distribution functions for these random variables.arrow_forward
- Let X1 and X2 be two continuous random variableshaving the joint probability density f(x1, x2) = 4x1x2 for 0 < x1 < 1, 0 < x2 < 10 elsewhereFind the joint probability density of Y1 = X21 and Y2 = X1X2.arrow_forwardb) Let Z₁ = X-X~N(0,1), and W₁ i) State, with parameter(s), the probability distribution of the statistic, T = ox YHY~N(0,1), for i=1,2,3,...,10, then: oy 10 ii) Find the mean and variance of the statistic T = ² 1,²₁² Σt=12₁ SiaWi iii) Calculate the probability that a statistic T = Z₁ + W₁ is at most 4. iv) Find the value of ß such that P(T> B) = 0.01, where T = Σ₁Z₁²+₁Wi².arrow_forwardX is the Gaussian (μ=1, σ=2) random variable. Y is the Gaussian (μ=2, σ=4) radnom variable. X and Y are independent. a) What is the PDF of V = X + Y b) What is the PDF of W = 3X + 2Yarrow_forward
- Let X and Y be discrete random variables with bivariate probability (mass) function 2x +y if x = 0,1 and y = 1,2,3 %3D %3D p(x, y) = 18 if not. a) Find P(X = 0,Y < 2) %3D P(X =99) b) Find the covariance between X and Y. S P(x:0) b) Find the variance of U = -2X +3Y %3Darrow_forwardShow that if X, Y are independent random variables, then Cov(X, Y ) = 0.arrow_forwardLet X and Y be independent random variables. X is N(1,9) and Y is uniform on the interval {--1, 1]. Lat Write down the joint density for (X,Y) o Give the mean and variance of Y c) Give the median of X I dY Give the correlation coefficient p of X and Yarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning