A First Course in Probability
9th Edition
ISBN: 9780321794772
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.5STPE
Suppose that X, Y, and Z are independent random variables that are each equally likely to be either 1 or 2. Find the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A random variable x has a probability mass function defined by
P(X=x) = r(x-1). if x= 2,3
r(8-x). if x=4,5,6
0. Otherwise
Write out the probability mass function.
What will be the expectation and variance of x.
Find P (x greater or equal to 2 and less or equal to 5).
Two friends play a ball picking game where one wants to avoid the ‘black’ ball: The two friends each have a bag with 2 balls (1 black and 1 red) and they each randomly choose one ball out of their bag. Whoever picks a black ball must pay the other person $1 no matter what the other friend selected. If both friends choose the red ball, nobody wins or loses any money.
Say you played this game with you friend. Find the probability mass function (pmf) for your net winnings (in $) from this game. Display it in table form.
Let X1, X2, and X3 be independent random variables from (-1, 1). Find the probability density function and the expected value of the random variable [X(1) + X(2)]/2.
Chapter 6 Solutions
A First Course in Probability
Ch. 6 - Two fair dice are rolled. Find the joint...Ch. 6 - Suppose that 3 balls are chosen without...Ch. 6 - In Problem 8 t, suppose that the white balls are...Ch. 6 - Repeat Problem 6.2 when the ball selected is...Ch. 6 - Repeat Problem 6.3a when the ball selected is...Ch. 6 - The severity of a certain cancer is designated by...Ch. 6 - Consider a sequence of independent Bernoulli...Ch. 6 - Prob. 6.8PCh. 6 - The joint probability density function of X and Y...Ch. 6 - Prob. 6.10P
Ch. 6 - In Example Id, verify that f(x,y)=2exe2y,0x,0y, is...Ch. 6 - The number of people who enter a drugstore in a...Ch. 6 - A man and a woman agree to meet at a certain...Ch. 6 - An ambulance travels back and forth at a constant...Ch. 6 - The random vector (X,Y) is said to be uniformly...Ch. 6 - Suppose that n points are independently chosen at...Ch. 6 - Prob. 6.17PCh. 6 - Let X1 and X2 be independent binomial random...Ch. 6 - Show that f(x,y)=1x, 0yx1 is a joint density...Ch. 6 - Prob. 6.20PCh. 6 - Let f(x,y)=24xy0x1,0y1,0x+y1 and let it equal 0...Ch. 6 - The joint density function of X and Y is...Ch. 6 - Prob. 6.23PCh. 6 - Consider independent trials, each of which results...Ch. 6 - Suppose that 106 people arrive at a service...Ch. 6 - Prob. 6.26PCh. 6 - Prob. 6.27PCh. 6 - The time that it takes to service a car is an...Ch. 6 - The gross daily sales at a certain restaurant are...Ch. 6 - Jills bowling scores are approximately normally...Ch. 6 - According to the U.S. National Center for Health...Ch. 6 - Monthly sales are independent normal random...Ch. 6 - The expected number of typographical errors on a...Ch. 6 - The monthly worldwide average number of airplane...Ch. 6 - In Problem 6.4, calculate the conditional...Ch. 6 - In Problem 6.3 calculate the conditional...Ch. 6 - Prob. 6.37PCh. 6 - Prob. 6.38PCh. 6 - Prob. 6.39PCh. 6 - The joint probability mass function of X and Y is...Ch. 6 - Prob. 6.41PCh. 6 - Prob. 6.42PCh. 6 - An insurance company supposes that each person has...Ch. 6 - If X1,X2,X3 are independent random variables that...Ch. 6 - Prob. 6.45PCh. 6 - If 3 trucks break down at points randomly...Ch. 6 - Consider a sample of size 5 from a uniform...Ch. 6 - Prob. 6.48PCh. 6 - Let X(1),X(2),...,X(n) be the order statistics of...Ch. 6 - Let Z1 and Z2 be independent standard normal...Ch. 6 - Derive the distribution of the range of a sample...Ch. 6 - Let X and Y denote the coordinates of a point...Ch. 6 - Prob. 6.53PCh. 6 - Prob. 6.54PCh. 6 - Prob. 6.55PCh. 6 - Prob. 6.56PCh. 6 - Repeat Problem 6.60 when X and Y are independent...Ch. 6 - Prob. 6.58PCh. 6 - Prob. 6.59PCh. 6 - In Example 8b, let Yk+1=n+1i=1kYi. Show that...Ch. 6 - Consider an urn containing n balls numbered 1.. .....Ch. 6 - Verify equation (1.2).Ch. 6 - Suppose that the number of events occurring in a...Ch. 6 - Prob. 6.3TECh. 6 - Solve Buffons needle problem when LD.Ch. 6 - If X and Y are independent continuous positive...Ch. 6 - Prob. 6.6TECh. 6 - Prob. 6.7TECh. 6 - Let X and Y be independent continuous random...Ch. 6 - Let X1,...,Xn be independent exponential random...Ch. 6 - The lifetimes of batteries are independent...Ch. 6 - Prob. 6.11TECh. 6 - Show that the jointly continuous (discrete) random...Ch. 6 - In Example 5e t, we computed the conditional...Ch. 6 - Suppose that X and Y are independent geometric...Ch. 6 - Consider a sequence of independent trials, with...Ch. 6 - If X and Y are independent binomial random...Ch. 6 - Suppose that Xi,i=1,2,3 are independent Poisson...Ch. 6 - Prob. 6.18TECh. 6 - Let X1,X2,X3 be independent and identically...Ch. 6 - Prob. 6.20TECh. 6 - Suppose that W, the amount of moisture in the air...Ch. 6 - Let W be a gamma random variable with parameters...Ch. 6 - A rectangular array of mn numbers arranged in n...Ch. 6 - If X is exponential with rate , find...Ch. 6 - Suppose thatF(x) is a cumulative distribution...Ch. 6 - Show that if n people are distributed at random...Ch. 6 - Establish Equation (6.2) by differentiating...Ch. 6 - Show that the median of a sample of size 2n+1 from...Ch. 6 - Verify equation (6.6), which gives the joint...Ch. 6 - Compute the density of the range of a sample of...Ch. 6 - Let X(1)X(2)...X(n) be the ordered values of n...Ch. 6 - Let X1,...,Xn be a set of independent and...Ch. 6 - Let X1,....Xn, be independent and identically...Ch. 6 - Prob. 6.34TECh. 6 - Prob. 6.35TECh. 6 - Each throw of an unfair die lands on each of the...Ch. 6 - The joint probability mass function of the random...Ch. 6 - Prob. 6.3STPECh. 6 - Let r=r1+...+rk, where all ri are positive...Ch. 6 - Suppose that X, Y, and Z are independent random...Ch. 6 - Let X and Y be continuous random variables with...Ch. 6 - The joint density function of X and Y...Ch. 6 - Consider two components and three types of shocks....Ch. 6 - Consider a directory of classified advertisements...Ch. 6 - The random parts of the algorithm in Self-Test...Ch. 6 - Prob. 6.11STPECh. 6 - The accompanying dartboard is a square whose sides...Ch. 6 - A model proposed for NBA basketball supposes that...Ch. 6 - Let N be a geometric random variable with...Ch. 6 - Prob. 6.15STPECh. 6 - You and three other people are to place bids for...Ch. 6 - Find the probability that X1,X2,...,Xn is a...Ch. 6 - 6.18. Let 4VH and Y, be independent random...Ch. 6 - Let Z1,Z2.....Zn be independent standard normal...Ch. 6 - Let X1,X2,... be a sequence of independent and...Ch. 6 - Prove the identity P{Xs,Yt}=P{Xs}+P{Yt}+P{Xs,Yt}1...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- Assume that the probability that an airplane engine will fail during a torture test is 12and that the aircraft in question has 4 engines. Construct a sample space for the torture test. Use S for survive and F for fail.arrow_forwardSuppose that f(x, y) = (1/12 1/6 1/3 0 , (1,2), (3,2) , (2,2), (3,3), (1,3) , (2,4) , otherwise is a joint probability mass function of two random variables X and Y. Then E(Y|X= 1) isarrow_forwardLet X be a continuous random variable symmetric about Y. Let Z = 1 if X >Y OR Z = 0 if X <= Y. Find the covariance of |X| and Z.arrow_forward
- B) Let X and Y be discrete random variables with joint probability function 2-y+1 9 for x = 1,2 and y = 1, 2 p(x, y) otherwise Calculate E(Y/X).arrow_forwardLet X1 and X2 be continuous random variables with the joint probability - function fx1,x,(x1, x2), -00 < x; < o, i = 1,2. Let Y1 = X1 + X2 andarrow_forwardLet X and Y are two independent random variables with probabilities P(X) = {0.25,0.45,0.3} and P(Y) = {0.15, 0.5, 0.35}. Find the joint entropy H(X,Y).arrow_forward
- Suppose that 40% of fruit flies possess a certain gene. We will randomly select fruit flies until we have found 3 flies with the gene. Let Y = 0, 1, 2, 3, 4, 5, be the random variable defined as the number of flies we must be select so that we obtain three flies with the gene. If f(y) denotes the probability function for Y, find f(8).arrow_forwardLet X and Y be two independent random variables that represent the payoff of Lottery 1 and Lottery 2, respectively. Their probability mass functions are given by: P(X = a,) = 1- P(X = az) = p, P(Y = az) = 1– P(Y = a4) = q, where 0 E(3+ 133ln Y). O True O Falsearrow_forward2. a. If X is a discrete random variable with probability mass function P(X =x) and a, b are constants, prove that E(aX +b)= aE(X)+b, ii. Var (ax +b)=a³Var(X). i.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License