Nitric acid is a chemical intermediate primarily used in the synthesis of ammonium nitrate, which is used in the manufacture of fertilizers. The acid also is important in the production of other nitrates and in the separation of metals from ores.
Nitric acid may be produced by oxidizing ammonia to nitric oxide over a platinum—rhodium catalyst, then oxidizing the nitric oxide to nitrogen dioxide in a separate unit where it is absorbed in water to form an aqueous solution of nitric acid.
The reaction sequence is as follows:
where, unless otherwise speci?ed, the species are gases. A side reaction in which ammonia is oxidized to form nitrogen and water can lower product yield:
Ammonia vapor produced by vaporizng pure liquid ammonia at 820 kPa absolute is mixed with air, and the combined stream enters the ammonia oxidation unit. Air at 30°C, 1 atm absolute, and 50% relative humidity is compressed and fed to the process. A fraction of the air is sent to the cooling and hydration units, while the remainder is passed through a heat exchanger and mixed with the ammonia. The total oxygen fed to the process is the amount stoichiometrically required to convert all of the ammonia to HNO3, while the fraction sent to the ammonia oxidizer corresponds to the stoichiometric amount required to convert ammonia to NO.
The ammonia reacts completely in the oxidizer, with 97% forming NO and the rest forming N2. Only a negligible amount of NO2is formed in the oxidizer. However, the gas leaving the oxidizer is subjected to a series of cooling and hydration steps in which the NO is completely oxidized to NO2, which in turn combines with water (some of which is present in the gas from the oxidizer and the rest is added) to form a 55 wt% aqueous solution of nitric acid. The product gas from the process may be takento contain only N2and O2.
(a) Taking a basis of 100 kmol of ammonia fed to the process, calculate (i) the volumes (m3) of the ammonia vapor and air fed to the process using the compressibility-factor equation of state; (ii) the amount (kmol) and composition (in mole fractions) of the gas leaving the oxidation unit; (m) the required volume of liquid water(m3) that must be fed to the cooling and hydration units; and (iv) the fraction of the air fed to the ammonia oxidizer.
(b) Scale the results from Part (a) to a new basis of 100 metric tons per hour of 55% nitiic acid solution.
Exploratory Exercises—Research and Discover (c) Nitrogen oxides (collectively referred to as NOx) are a category of pollutants that are formed in many ways, including processes like that described in this problem. List the annual emission rates of the three largest sources of NOxemissions in your home region. What are the effects of exposure to excessive concentrations of NOx?
(d) A platinum—rhodium catalyst is used in ammonia oxidation. Explain the function of the catalyst, describe its structure, and explain the relationship of the structure to the function.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
ELEM.PRIN.OF CHEMICAL...ABRIDGED (LL)
Additional Engineering Textbook Solutions
Degarmo's Materials And Processes In Manufacturing
Starting Out with Java: From Control Structures through Data Structures (4th Edition) (What's New in Computer Science)
Starting Out with Python (4th Edition)
Modern Database Management
Database Concepts (8th Edition)
Java: An Introduction to Problem Solving and Programming (8th Edition)
- please, provide me with right resultsarrow_forwardEx. HW. A vertical glass tube, 2cm ID & 5m long in heated uniformly over its length. The water enter at (200-204 C) & 68.9 bar calculated the pressure drop if the flowrate 0.15 Kg/s & the power applied as a heat to the fluid is 100KW using the homogeneous model. Given that enthalpy at inlet temp.=0.87MJ/Kg, enthalpy saturation temp (285C)=1.26 MJ/Kg and μl=0.972*10-4 Ns/m2, μG=2.89*10-5 Ns/m2, UG=2.515*10-2m3/Kg and the change in UG over range of pressure=-4.45*10-4m3/Kg/bar.arrow_forward4. An experimental test rig is used to examine two-phase flow regimes in horizontal pipelines. A particular experiment involved uses air and water at a temperature of 25°C, which flow through a horizontal glass tube with an internal diameter of 25.4 mm and a length of 40 m. Water is admitted at a controlled rate of 0.026 kgs at one end and air at a rate of 5 x 104 kgs in the same direction. The density of water is 1000 kgm³, and the density of air is 1.2 kgm. Determine the mass flow rate, the mean density, gas void fraction, and the superficial velocities of the air and water. Answer: 0.02605 kgs 1, 61.1 kgm³, 0.94, 0.822 ms-1, 0.051 ms-1arrow_forward
- and the viscosity of the water is 1.24 × 104 Nsm 2. Answer: Slug flow 1. Determine the range of mean density of a mixture of air in a 50:50 oil-water liquid phase across a range of gas void fractions. The den- sity of oil is 900 kgm³, water is 1000 kgm³, and gas is 10 kgm³.arrow_forwardA chemical reaction takes place in a container of cross-sectional area 50.0 cm2. As a result of the reaction, a piston is pushed out through 15 cm against an external pressure of 121 kPa. Calculate the work done (in J) by the system.arrow_forwardExample 7.2 Steam is generated in a high pressure boiler containing tubes 2.5 m long and 12.5 mm internal diameter. The wall roughness is 0.005 mm. Water enters the tubes at a pressure of 55.05 bar and a temperature of 270°C, and the water flow rate through each tube is 500 kg/h. Each tube is heated uniformly at a rate of 50 kW. Calle (a) Estimate the pressure drop across each tube (neglecting end effects) using (i) the homogeneous flow model and (ii) the Martinelli-Nelson correlation. (b) How should the calculation be modified if the inlet temperature were 230°C at the same pressure?arrow_forward
- Please solve this question by simulation in aspen hysysarrow_forward(11.35. For a binary gas mixture described by Eqs. (3.37) and (11.58), prove that: 4812 Pу132 ✓ GE = 812 Py1 y2. ✓ SE dT HE-12 T L = = (812 - 7 1/8/123) d² 812 Pylyz C=-T Pylyz dT dT² See also Eq. (11.84), and note that 812 = 2B12 B11 - B22. perimental values of HE for binary liquid mixtures ofarrow_forwardplease provide me the solution with more details. because the previous solution is not cleararrow_forward
- Introduction to Chemical Engineering Thermodynami...Chemical EngineeringISBN:9781259696527Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark SwihartPublisher:McGraw-Hill EducationElementary Principles of Chemical Processes, Bind...Chemical EngineeringISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEYElements of Chemical Reaction Engineering (5th Ed...Chemical EngineeringISBN:9780133887518Author:H. Scott FoglerPublisher:Prentice Hall
- Industrial Plastics: Theory and ApplicationsChemical EngineeringISBN:9781285061238Author:Lokensgard, ErikPublisher:Delmar Cengage LearningUnit Operations of Chemical EngineeringChemical EngineeringISBN:9780072848236Author:Warren McCabe, Julian C. Smith, Peter HarriottPublisher:McGraw-Hill Companies, The