Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 6.105PP
Repeat Problem 6.96 if the tank is sealed and a pressure of 20 kPa(gage) is above the water in the tank.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A closed tank has an orifice in the vertical side with diameter of 70mm. Thehead of oil having a specific gravity of 0.92 is 2m above the orifice. If there isa pressure of 15kpa at the top of the oil surface inside the tank, compute theheadloss in the orifice with Cv = 0.96.
The absolute pressure in a closed gas tank is 260 KPa. Compute the pressure head in meters of water.
DO NOT ANSWER IF YOU ALREADY ANSWERED THIS. I'LL DOWNVOTE YOU IF I SEE THE SAME ANSWER. MAKE SURE IT IS UNIQUE.
Chapter 6 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 6 - Convert a volume flow rate of 3.0 gal/min to...Ch. 6 - Convert 459 gal/min to rrP/s.Ch. 6 - Convert 3720 gal/min to mJ/sCh. 6 - Convert 34.3 gal/min to mJ/sCh. 6 - Convert a volume flow rate of 125 L/min to m3/s.Ch. 6 - Convert 4500 L/min to m5/s.Ch. 6 - Convert 15 000 L/minto m3/s.Ch. 6 - Convert 459 gal/min to L/mninCh. 6 - Convert 3720 gal/min to L/minCh. 6 - Convert 23.5cm2/stom3/s.
Ch. 6 - '6.11 Convert 0.296cm5/stom3/s.Ch. 6 - Convert 0.105 cm3/s to L/minCh. 6 - Convert 3.53103m3/s to L/min.Ch. 6 - Convert 5.26106m3stoL/min.Ch. 6 - Prob. 6.15PPCh. 6 - Convert 20 gal/min to ft'/s.Ch. 6 - Convert 2500 gal/min to ft5/s.Ch. 6 - Convert 2.50 gal/min to ft3/s.Ch. 6 - Convert 125 ft3/s to gal/minCh. 6 - Convert 0.060 ft3/s to gal/min.Ch. 6 - Convert 0.03 ft5/s to gal/minCh. 6 - Convert ft5/s sto gal/minCh. 6 - Table 6.21 lists the range of typical volume flow...Ch. 6 - Table 6.2 lists the range of typical volume flow...Ch. 6 - A certain deep-well pump for a residence is rated...Ch. 6 - A small pump delivers 0.85 gal/h of liquid...Ch. 6 - A small metering pump delivers 11.4 gal of a water...Ch. 6 - A small metering pump delivers 19.5 mL/min of...Ch. 6 - Water at 10 C is flowing at 0.075 m3/s Calculate...Ch. 6 - Oil for a hydraulic system (sg =0.90 ) is flowing...Ch. 6 - A liquid refrigerant (sg = 1.08) is flowing at a...Ch. 6 - After the refrigerant from Problem 6.31 flashes...Ch. 6 - A fan delivers 640ft3/min (CFM) of air. If the...Ch. 6 - A large blower for a furnace delivers 47000ft3/min...Ch. 6 - A furnace requires 1200 Ib/h of air for efficient...Ch. 6 - If a pump removes 1.65 gal/min of water from a...Ch. 6 - Calculate the diameter of a pipe that would carry...Ch. 6 - If the velocity of a liquid is 1.65 ft/s in a...Ch. 6 - When 2000 L/min of water flows through a circular...Ch. 6 - Water flows at 1.20 m/s in a circular section with...Ch. 6 - Figure 6.16 shows a fabricated assembly made from...Ch. 6 - A standard Schedule 40 steel pipe is to be...Ch. 6 - If water at 180 F is flowing with a velocity of...Ch. 6 - A standard steel tube, 1.5 25-mm OD 3 1,5-mm wall...Ch. 6 - The recommended velocity of flow in the discharge...Ch. 6 - Repeat Problem 6.45, except specify suitable sizes...Ch. 6 - Table 6.2 shows the typical volume flow rate for...Ch. 6 - Repeat Problem 6.47 but use Schedule 80 DM pipeCh. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.49 for a DN 50 Schedule 30 pipe.Ch. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.51 for a 4-in Schedule 30 pipe.Ch. 6 - From the list of standard hydraulic steel tubing...Ch. 6 - A standard 6-in Schedule 40 steel pipe is carrying...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - A venturi meter is a device that uses a...Ch. 6 - A flow nozzle, shown in Fig. 6.18 is used to...Ch. 6 - Gasoline (sg = 0.67) is flowing at 0.11 m3/s in...Ch. 6 - Water at 10 C is flowing from point A to point B...Ch. 6 - Calculate the volume flow rate of water at 5 C...Ch. 6 - Calculate the pressure required in the larger...Ch. 6 - Kerosene with a specific weight of 50.0 lb/ft3 is...Ch. 6 - For the system shown in Fig. 6.23 ; calculate (a)...Ch. 6 - For the system shown in Fig. 6.24ss, calculate (a)...Ch. 6 - For the tank shown in Fig. 6.25lO, calculate the...Ch. 6 - Calculate the pressure of the air in the sealed...Ch. 6 - For the siphon in Fig. 6.26, calculate (a) the...Ch. 6 - For the siphon in Fig. 6.26 , calculate the...Ch. 6 - For the siphon in Fig. 6.26 , assume that the...Ch. 6 - For the siphon shown in Fig. 6.27, calculate (a)...Ch. 6 - For the special fabricated reducer shown in Fig....Ch. 6 - In the fabricated enlargement shown in Fig. 6.29,...Ch. 6 - Figure 6.30 shows a manometer being used to...Ch. 6 - For the venturi meter shown in Fig. 6.30,...Ch. 6 - Oil with a specific weight of 8.64 kN/m3 flows...Ch. 6 - The venturi meter shown in Fig. 6.32 iP carries...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Gasoline (sg = 0.67) is flowing at 4.0 ft3/s in...Ch. 6 - Oil with a specific weight of 55.0lb/ft3 flows...Ch. 6 - Draw a plot of elevation head, pressure head,...Ch. 6 - Prob. 6.84PPCh. 6 - Figure 6.36 shows a system in which water flows...Ch. 6 - Figure 6.37 shows a venturi meter with a U-tube...Ch. 6 - For the tank shown in Fig. 6.38, compute the...Ch. 6 - What depth of fluid above the outlet nozzle is...Ch. 6 - Derive Torricelli's theorem for the velocity of...Ch. 6 - Solve Problem 6.88 using the direct application of...Ch. 6 - To what height will the jet of fluid rise for the...Ch. 6 - To what height will the jet of water rise for the...Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Prob. 6.103PPCh. 6 - Repeat Problem 6.101 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.96 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.100 if the tank is sealed and a...Ch. 6 - A village currently carries water by hand from a...Ch. 6 - A "spa tub" is to be designed to replace bath tubs...Ch. 6 - A simple soft drink system relies on pressurized...Ch. 6 - A concept team for a toy company is considering a...Ch. 6 - 6.111 Bernoulli's principle applies to Venturi...Ch. 6 - Prob. 6.112PPCh. 6 - You are to develop a mixing valve for use in a...Ch. 6 - Prob. 6.114PPCh. 6 - You would like to empty the in-ground pool in the...Ch. 6 - Prob. 6.116PPCh. 6 - Create a spreadsheet for computing the values of...Ch. 6 - Prob. 2APCh. 6 - Prob. 3APCh. 6 - Create a spreadsheet for computing, using Eq....Ch. 6 - Prob. 5APCh. 6 - Create a spreadsheet for computing the velocity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Oil of specific gravity of 0.80 is being pumped. A pressure gauge located downstream of the pump reads 280 kpa. What is the pressure head in meter of oil?arrow_forwardIf the pressure in a tank is 300 kPa, find the equivalent pressure head of a liquid with a specific gravity of 9 The equivalent head is marrow_forwardA small pipe 0.60 m long is filled with water and caped ar its end. It is placed in a horizontal position. a. How fast must it be rotated about a vertical axis 0.30 m from one end to produce a maximum pressure of 6.895 Kpa? b. What is the pressure at the other end of the pipe? c. What is the pressure at yhe midpoint of the pipe?arrow_forward
- A simple rainwater collector used for home garden use is show below. It is comprised of an open-air water tank, a "compliant" or flexible tube, and a valve. To avoid overflow, the valve is set to open when the water in the tank reaches a height of 2m. The valve rests on the ground 3m beneath the tank's base. The outlet of the valve is open to atmosphere. a) Calculate the pressure at the bottom of the tank when the valve automatically opens. Pam = 101 kPa g = 9.81m/s2 H= 2m p = 998kg/m3 H= 1×10.5 Pa s Water Tank Tube (Smooth) h = 3m d = 5cm Valve 1= 4marrow_forwardA simple rainwater collector used for home garden use is show below. It is comprised of an open-air water tank, a "compliant" or flexible tube, and a valve. To avoid overflow, the valve is set to open when the water in the tank reaches a height of 2m. The valve rests on the ground 3m beneath the tank's base. The outlet of the valve is open to atmosphere. a) Calculate the pressure at the bottom of the tank when the valve automatically opens. b) Calculate the pressure at the valve when it automatically opens. c) Assuming inviscid flow, estimate the average velocity of the water flowing through the tube at the moment when the valve automatically opens. Assume that the tank is very large compared to the tube, so that the velocity of the water at the top of the tank is zero. Assume that the valve provides no resistance to flow when opened. d) Using your answer to part c), calculate the rate of discharge in kg/s when the valve automatically opens. e) Using your answer to part c), estimate…arrow_forwardA simple rainwater collector used for home garden use is show below. It is comprised of an open-air water tank, a "compliant" or flexible tube, and a valve. To avoid overflow, the valve is set to open when the water in the tank reaches a height of 2m. The valve rests on the ground 3m beneath the tank's base. The outlet of the valve is open to atmosphere. a) Calculate the pressure at the bottom of the tank when the valve automatically opens. b) Calculate the pressure at the valve when it automatically opens. c) Assuming inviscid flow, estimate the average velocity of the water flowing through the tube at the moment when the valve automatically opens. ASsume that the tank is very large compared to the tube, so that the velocity of the water at the top of the tank is zero. Assume that the valve provides no resistance to flow when opened. d) Using your answer to part c), calculate the rate of discharge in kg/s when the valve automatically opens. e) Using your answer to part c), estimate…arrow_forward
- Q5: A U-shaped tube contains water, if it rotates around one of its arms at a speed of 100 rpm, what will be the difference between the fluid levels in the arms? 100 rpm 2 -0.5m harrow_forward7. A horizontal cylindrical triangle boiler, length 2.5 m and radius of base 0.6 m, is being filled with water at the rate of 0.09 min .How fast is the water rising in the boiler when the water is 0.3 m deep?arrow_forwardFind the pressure at 13 KM in standard atmospheric conditions.arrow_forward
- Task 3:Your work is to study the following well-type manometer that will be used for students in the fluidmechanics lab:The manometer is built with a tube diameter of 20 mm and a reservoir diameter of 10 cm. Whenthere is no pressure difference across the manometer, the elevations on both sides are the same atA* level. 1. When a high pressure is applied to the left side, the water in the small tube goes 30 cm up,calculate PA.2. Explain the use and limitations of manometers. Then suggest two points for using welltype manometer for accurate measurements, write your answer in 75 words or less.arrow_forwardAt constant temperature, the volume of the increases from 40 L to 60 L, what is the suction pressure if the discharge pressure is 150 mmHg absolutearrow_forwardA person sucking hard on a thin tube can reduce the pressure in it to 90% of atmospheric pressure. How high can the person suck water up the tube?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Types Of loads - Engineering Mechanics | Abhishek Explained; Author: Prime Course;https://www.youtube.com/watch?v=4JVoL9wb5yM;License: Standard YouTube License, CC-BY