Applied Fluid Mechanics (7th Edition)
7th Edition
ISBN: 9780132558921
Author: Robert L. Mott, Joseph A. Untener
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 6.116PP
To determine
To find:
The flow velocity of water at the nozzle exit.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
6. A Compressor of a compressed air system displaces air at 25 cubic meters per minute when the
intake pressure is 101.4 kPa. Compute the time required to pump up a 9 cubic meter receiver
from 550 kPa to 828 kPa if the average volumetric efficiency of the compressor is 70%
2.
A pump draws water from a lake delivered to a height of 50 meters above the lake and encounters 15 meters of headloss. Determine the pump power requirement in Kilo-Watts to deliver a constant supply of 500 Liters per second?
The correct answer has a margin of 1 from exact answer. Velocity head is neglected.
For the single pump-pipe system below, what will be the changes for the operating point if we increase the pipe size but decrease the shaft speed of the pump?
EB
H₂
O The operating point will remain the same.
O The operating point will occur either at a higher discharge or at a lower discharge, depending on the specific influence of each change.
O The operating point will occur at a higher discharge.
O The operating point will occur at a lower discharge.
Chapter 6 Solutions
Applied Fluid Mechanics (7th Edition)
Ch. 6 - Convert a volume flow rate of 3.0 gal/min to...Ch. 6 - Convert 459 gal/min to rrP/s.Ch. 6 - Convert 3720 gal/min to mJ/sCh. 6 - Convert 34.3 gal/min to mJ/sCh. 6 - Convert a volume flow rate of 125 L/min to m3/s.Ch. 6 - Convert 4500 L/min to m5/s.Ch. 6 - Convert 15 000 L/minto m3/s.Ch. 6 - Convert 459 gal/min to L/mninCh. 6 - Convert 3720 gal/min to L/minCh. 6 - Convert 23.5cm2/stom3/s.
Ch. 6 - '6.11 Convert 0.296cm5/stom3/s.Ch. 6 - Convert 0.105 cm3/s to L/minCh. 6 - Convert 3.53103m3/s to L/min.Ch. 6 - Convert 5.26106m3stoL/min.Ch. 6 - Prob. 6.15PPCh. 6 - Convert 20 gal/min to ft'/s.Ch. 6 - Convert 2500 gal/min to ft5/s.Ch. 6 - Convert 2.50 gal/min to ft3/s.Ch. 6 - Convert 125 ft3/s to gal/minCh. 6 - Convert 0.060 ft3/s to gal/min.Ch. 6 - Convert 0.03 ft5/s to gal/minCh. 6 - Convert ft5/s sto gal/minCh. 6 - Table 6.21 lists the range of typical volume flow...Ch. 6 - Table 6.2 lists the range of typical volume flow...Ch. 6 - A certain deep-well pump for a residence is rated...Ch. 6 - A small pump delivers 0.85 gal/h of liquid...Ch. 6 - A small metering pump delivers 11.4 gal of a water...Ch. 6 - A small metering pump delivers 19.5 mL/min of...Ch. 6 - Water at 10 C is flowing at 0.075 m3/s Calculate...Ch. 6 - Oil for a hydraulic system (sg =0.90 ) is flowing...Ch. 6 - A liquid refrigerant (sg = 1.08) is flowing at a...Ch. 6 - After the refrigerant from Problem 6.31 flashes...Ch. 6 - A fan delivers 640ft3/min (CFM) of air. If the...Ch. 6 - A large blower for a furnace delivers 47000ft3/min...Ch. 6 - A furnace requires 1200 Ib/h of air for efficient...Ch. 6 - If a pump removes 1.65 gal/min of water from a...Ch. 6 - Calculate the diameter of a pipe that would carry...Ch. 6 - If the velocity of a liquid is 1.65 ft/s in a...Ch. 6 - When 2000 L/min of water flows through a circular...Ch. 6 - Water flows at 1.20 m/s in a circular section with...Ch. 6 - Figure 6.16 shows a fabricated assembly made from...Ch. 6 - A standard Schedule 40 steel pipe is to be...Ch. 6 - If water at 180 F is flowing with a velocity of...Ch. 6 - A standard steel tube, 1.5 25-mm OD 3 1,5-mm wall...Ch. 6 - The recommended velocity of flow in the discharge...Ch. 6 - Repeat Problem 6.45, except specify suitable sizes...Ch. 6 - Table 6.2 shows the typical volume flow rate for...Ch. 6 - Repeat Problem 6.47 but use Schedule 80 DM pipeCh. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.49 for a DN 50 Schedule 30 pipe.Ch. 6 - Compute the resulting velocity of flow if 400...Ch. 6 - Repeat Problem 6.51 for a 4-in Schedule 30 pipe.Ch. 6 - From the list of standard hydraulic steel tubing...Ch. 6 - A standard 6-in Schedule 40 steel pipe is carrying...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 to specify...Ch. 6 - For Problems 6.55-6.57, use Fig. 6.3 O to specify...Ch. 6 - A venturi meter is a device that uses a...Ch. 6 - A flow nozzle, shown in Fig. 6.18 is used to...Ch. 6 - Gasoline (sg = 0.67) is flowing at 0.11 m3/s in...Ch. 6 - Water at 10 C is flowing from point A to point B...Ch. 6 - Calculate the volume flow rate of water at 5 C...Ch. 6 - Calculate the pressure required in the larger...Ch. 6 - Kerosene with a specific weight of 50.0 lb/ft3 is...Ch. 6 - For the system shown in Fig. 6.23 ; calculate (a)...Ch. 6 - For the system shown in Fig. 6.24ss, calculate (a)...Ch. 6 - For the tank shown in Fig. 6.25lO, calculate the...Ch. 6 - Calculate the pressure of the air in the sealed...Ch. 6 - For the siphon in Fig. 6.26, calculate (a) the...Ch. 6 - For the siphon in Fig. 6.26 , calculate the...Ch. 6 - For the siphon in Fig. 6.26 , assume that the...Ch. 6 - For the siphon shown in Fig. 6.27, calculate (a)...Ch. 6 - For the special fabricated reducer shown in Fig....Ch. 6 - In the fabricated enlargement shown in Fig. 6.29,...Ch. 6 - Figure 6.30 shows a manometer being used to...Ch. 6 - For the venturi meter shown in Fig. 6.30,...Ch. 6 - Oil with a specific weight of 8.64 kN/m3 flows...Ch. 6 - The venturi meter shown in Fig. 6.32 iP carries...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Oil with a specific gravity of 0.90 is flowing...Ch. 6 - Gasoline (sg = 0.67) is flowing at 4.0 ft3/s in...Ch. 6 - Oil with a specific weight of 55.0lb/ft3 flows...Ch. 6 - Draw a plot of elevation head, pressure head,...Ch. 6 - Prob. 6.84PPCh. 6 - Figure 6.36 shows a system in which water flows...Ch. 6 - Figure 6.37 shows a venturi meter with a U-tube...Ch. 6 - For the tank shown in Fig. 6.38, compute the...Ch. 6 - What depth of fluid above the outlet nozzle is...Ch. 6 - Derive Torricelli's theorem for the velocity of...Ch. 6 - Solve Problem 6.88 using the direct application of...Ch. 6 - To what height will the jet of fluid rise for the...Ch. 6 - To what height will the jet of water rise for the...Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - What pressure is required above the water in Fig....Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to empty the tank shown...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Compute the time required to reduce the depth in...Ch. 6 - Prob. 6.103PPCh. 6 - Repeat Problem 6.101 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.96 if the tank is sealed and a...Ch. 6 - Repeat Problem 6.100 if the tank is sealed and a...Ch. 6 - A village currently carries water by hand from a...Ch. 6 - A "spa tub" is to be designed to replace bath tubs...Ch. 6 - A simple soft drink system relies on pressurized...Ch. 6 - A concept team for a toy company is considering a...Ch. 6 - 6.111 Bernoulli's principle applies to Venturi...Ch. 6 - Prob. 6.112PPCh. 6 - You are to develop a mixing valve for use in a...Ch. 6 - Prob. 6.114PPCh. 6 - You would like to empty the in-ground pool in the...Ch. 6 - Prob. 6.116PPCh. 6 - Create a spreadsheet for computing the values of...Ch. 6 - Prob. 2APCh. 6 - Prob. 3APCh. 6 - Create a spreadsheet for computing, using Eq....Ch. 6 - Prob. 5APCh. 6 - Create a spreadsheet for computing the velocity of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1. As a junior city engineer of a municipality, you are tasked to design the specifications of the pump with 3650 cu.m/day. The water source in the municipality is from an open reservoir and will supply to a pressure tank that will distribute to the municipality. open 4l Pressure reservoir Tank 70 m 15 m Pump Determine the following specifications of the pump and piping system (assume fluid stagnation at the pump). Velocity head at pt.1 to 2 if the diameter of the pipe is a.) 200 mm b.) Suction pressure of the pump in kPa (Pressure at pt. 2). c.) Velocíty head at pt.3 to 4 if the diameter of the pipe is 150 mm d.) Discharge pressure of the pump in kPa (Pressure at pt. 4). Assume atmospheric pressure at the pump. If an air vent is installed at the pipe just right before the pressure tank with diameter of 20 mm, what is the velocity of discharge in m/s? The height of the pressure tank is 12 m, what is the flowrate in cu.m/hr at pt.5 if the diameter of the pipe is 150 mm? e.) f.)arrow_forward3. A centrifugal pump is to be placed above a large, open water tank, as shown in the figure below. Water is pumped at a rate of I cu ft/s. At this flow rate the required net positive suction head, NPSHR, is 15 ft as specified by the pump manufacturer. The water temperature is 80°F and atmospheric pressure is 14.7 psi. Assume that the major head loss between the tank and the pump inlet is due to filter at the pipe inlet having a minor loss coefficient KL.-20. Other losses can be neglected. The pipe on the suction side of the pump has a diameter of 5 in. The water vapor pressure at 80°F is 0.5069 psia and y-62.22 lb/cu.ft. Determine Z1 for cavitation not to occur.. P1-Patm (1) (2) Reference planearrow_forwardTopics: Fundamental of fluid flow Oil (SG=0.82) entering a pump through an 8-inch diameter pipe at 4 psi has a flow rate of 3.5 cfs. It leaves the pump through a 4-inch diameter pipe at 15 psi. Assuming that the suction and discharge sides of the pump are at the same elevation, find the horsepower delivered to the water by the pump (550 lb.ft/s = 1 HP). Illustrate the problem and show your complete solution.arrow_forward
- Q Consider the following data relating toperformance of a centrifugal pump:speed 1200 rpm, flow rate 30 L/s, head 20 m, and power 5 kW. If the speed of the pump is increased to 1500 rpm, assuming the efficiency isunaltered, Find the new flow rate and head.arrow_forwardCan you draw a diagram of what’s happening please thanksarrow_forwardA centrifugal pump delivers 2.5 cfs of water against a head of 25 ft at 1500 rpm and requires 10 hp. If the speed is reduced to 1250 rpm calculate the flow (in m^3/s), assuming the same efficiency.arrow_forward
- A centrifugal pump discharging 10 lps against 25 m of head and operating with an efficiency of 60% requires 4.1 kW at 1000 rpm. What is the theoretical discharge if the speed is increased to 1500 rpm assuming the efficiency remains constant? What is the theoretical head and kW at 1500 rpm?.arrow_forwardA centrifugal pump supplies water at the rate of 750 liter/s against manometric head of 15 m of water. Pump running at 800rpm. Losses in impeller and casing of the pump is given by 0.03V₂2 where V₂ is absolute water velocity at impeller out. Manometric efficiency of the pump is 85%. If the flow velocity is constant at 3 m/s and assumed zero whirl at inlet, determine a) Blade angle at outlet b) Impeller diameter at outlet c) Impeller width at outlet if blade thickness is negligible The pump input power if overall efficiency is 75%. d)arrow_forwardA "spa tub" is to be designed to replace bath tubs in reno- vations. There are to be 6 outlet nozzles, each with a di- ameter of 12 mm, and each should have an outlet velocity of 12 m/s. What is the required flow rate from the single pump that supplies all of these nozzles? If there is one suction line leading to the pump, what is the minimum diameter to limit the velocity at the inlet of the pump to 2.5 m/s?arrow_forward
- no handwritten only only typedarrow_forwardA centrifugal pump delivers 227 m³/hr of water from a source 4 meters below the pump centre line to a pressure tank whose pressure is 2.8 kg/cm² . Friction loss estimates are 2 meters in the suction line and 1 metre in the discharge line. The diameter of the suction pipe is 250 mm and the discharge pipe is 200 mm. Find: a. The water horsepower b. The kW rating of the driving motor if the pump efficiency is 70%arrow_forward1.) A Pelton wheel with a needle-controlled nozzle develops 1 050 kW against a gross head of 300 m. The loss of head due to friction in the pipeline and the nozzle is 60 xV. where is the flow rate in m³/s. Assuming that the overall efficiency of the wheel remains constant at 83%, determine the percentage reduction in flow rate required when the power developed is reduced to 710 kW by closing a valve on the pipeline partially.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license