Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33 .) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim. Figure 6.33 Problem 53.
Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33 .) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim. Figure 6.33 Problem 53.
Artificial gravity in space stations. One problem for humans living in outer space is that they are apparently weightless. One way around this problem is to design a cylindrical space station that spins about an axis through its center at a constant rate. (See Figure 6.33.) This spin creates “artificial gravity” at the outside rim of the station. (a) If the diameter of the space station is 800.0 m, how fast must the rim be moving in order for the “artificial gravity” acceleration to be g at the outer rim? (b) If the space station is a waiting area for travelers going to Mars, it might be desirable to simulate the acceleration due to gravity on the Martian surface. How fast must the rim move in this case? (c) Make a free-body diagram of an astronaut at the outer rim.
You're on an interplanetary mission, in an orbit around the Sun. Suppose you make a maneuver that brings your perihelion in closer to the Sun but leaves your aphelion unchanged. Then you must have
Question 2 options:
sped up at perihelion
sped up at aphelion
slowed down at perihelion
slowed down at aphelion
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!
Chapter 6 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.