
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
10th Edition
ISBN: 9780134151779
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 38P
(a)
To determine
The speed at which at rock thrown to put it in the orbit of asteroid,
(b)
To determine
The time taken by rock to return and hit back on head.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The figure below shows, at left, a solid disk of radius R = 0.600 m and mass 75.0 kg.
Tu
Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The disk and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the disk
and pulley a clockwise angular acceleration of 1.67 rad/s². The tension T in the upper (taut) segment of the belt is 145 N.
(a) What is the tension (in N) in the lower (slack) segment of the belt?
N
(b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the disk accelerates clockwise. The upper segment of the belt once again has a tension of 145 N, but now the tension in
the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)?
rad/s²
A bridge truss extends x = 217 m across a river (shown in the figure below) where 0 = 40°. The structure is free to slide horizontally to permit thermal expansion. The structural components are connected by pin joints, and the masses of the bars are small compared with the mass of a
1300 kg car at the center. Calculate the force of tension or compression in each structural component (in N).
B
D
T
T
T
T
T
22820
AB
AC
BC
||| || || ||
BD
N ---Select---
N ---Select---
N ---Select---
N ---Select---
DE
N ---Select---
T
DC=
N ---Select---
TEC
N ---Select---
с
✓
E
no ai please
Chapter 6 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Ch. 6 - If there is a net force on a particle in uniform...Ch. 6 - As a car rounds a banked circular curve at...Ch. 6 - A student wrote, The reason an apple falls...Ch. 6 - Non-physicists often ask questions such as What...Ch. 6 - During an actual interview for a college teaching...Ch. 6 - If two planets have the same mass, will they...Ch. 6 - True or false? Astronauts in satellites orbiting...Ch. 6 - True or false? If a rock is acted upon by a...Ch. 6 - On an icy road, you approach a curve that has the...Ch. 6 - You are riding on a roller coaster with a hill...
Ch. 6 - The moon is accelerating toward the earth. Does...Ch. 6 - A passenger in a car rounding a sharp curve feels...Ch. 6 - If the earth had twice its present mass, its...Ch. 6 - An astronaut is floating happily outside her...Ch. 6 - A frictional force f provides the centripetal...Ch. 6 - Two masses m and 2m are each forced to go around a...Ch. 6 - A stone of weight W is attached to a strong string...Ch. 6 - If a planet had twice the earths radius, but only...Ch. 6 - When a mass goes in a horizontal circle with speed...Ch. 6 - In the previous problem, if both the speed and the...Ch. 6 - Two 1.0 Kg point masses a distance D apart each...Ch. 6 - Two massless bags contain identical bricks, each...Ch. 6 - When two point masses are a distance D apart, each...Ch. 6 - If human beings ever travel to a planet whose mass...Ch. 6 - A racing car drives at constant speed around the...Ch. 6 - A stone with a mass of 0.80 kg is attached to one...Ch. 6 - Force on a skaters wrist. A 52 kg ice skater spins...Ch. 6 - A flat (unbanked) curve on a highway has a radius...Ch. 6 - The Giant Swing at a county fair consists of a...Ch. 6 - A small button placed on a horizontal rotating...Ch. 6 - Using only astronomical data from Appendix E,...Ch. 6 - A highway curve with radius 900.0 ft is to be...Ch. 6 - The Indy 500. The Indianapolis Speedway (home of...Ch. 6 - A bowling ball weighing 71.2 N is attached to the...Ch. 6 - A lead fishing weight of mass 0.2 kg is tied to a...Ch. 6 - A 50.0 kg stunt pilot who has been diving her...Ch. 6 - Effect on blood of walking. While a person is...Ch. 6 - Stay dry! You tie a cord to a pail of water, and...Ch. 6 - Stunt pilots and fighter pilots who fly at high...Ch. 6 - If two tiny identical spheres attract each other...Ch. 6 - What is the ratio of the suns gravitational pull...Ch. 6 - Rendezvous in space! A couple of astronauts agree...Ch. 6 - What is the ratio of the gravitational pull of the...Ch. 6 - A 2150 kg satellite used in a cellular telephone...Ch. 6 - At a distance N RE from the earths surface, where...Ch. 6 - Find the magnitude and direction of the net...Ch. 6 - How far from a very small 100 kg ball would a...Ch. 6 - Each mass in Figure 6.30 is 3.00 kg. Find the...Ch. 6 - An 8.00 kg point mass and a 15.0 kg point mass are...Ch. 6 - How many kilometers would you have to go above the...Ch. 6 - Your spaceship lands on an unknown planet. To...Ch. 6 - If an objects weight is W on the earth, what would...Ch. 6 - Huygens probe on Titan. In January 2005 the...Ch. 6 - The mass of the moon is about 1/81 the mass of the...Ch. 6 - Neutron stars, such as the one at the center of...Ch. 6 - The asteroid 243 Ida has a mass of about 4.0 1016...Ch. 6 - Prob. 33PCh. 6 - What is the period of revolution of a satellite...Ch. 6 - Prob. 35PCh. 6 - Planets beyond the solar system. On October 15,...Ch. 6 - Communications satellites. Communications...Ch. 6 - Prob. 38PCh. 6 - Apparent weightlessness in a satellite. You have...Ch. 6 - Baseball on Deimos! Deimos, a moon of Mars, is...Ch. 6 - International Space Station. The International...Ch. 6 - Artificial gravity. One way to create artificial...Ch. 6 - Shortest possible day. Consider the fact that an...Ch. 6 - Volcanoes on lo. Jupiters moon lo has active...Ch. 6 - You tie one end of 0.3-m-long spring to a 0.5 kg...Ch. 6 - An astronaut carefully measures the gravitational...Ch. 6 - Prob. 47GPCh. 6 - A 1125 kg car and a 2250 kg pickup truck approach...Ch. 6 - Exploring Europa. Europa, a satellite of Jupiter,...Ch. 6 - The star Rho1 Cancri is 57 light-years from the...Ch. 6 - A 4.00 kg block is attached to a vertical rod by...Ch. 6 - As your bus rounds a flat curve at constant speed...Ch. 6 - Artificial gravity in space stations. One problem...Ch. 6 - Based on these data, what is the most likely...Ch. 6 - How many times the acceleration due to gravity g...Ch. 6 - Exoplanets. As planets with a wide variety of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m₁ = 1.85 kg and a block of mass m₂ is 0.360 for both blocks. 5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction m M, R m2 Ꮎ (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) m/s2 (b) Determine the tensions in the string on both sides of the pulley. left of the pulley right of the pulley N Narrow_forwardConsider as a system the Sun with Venus in a circular orbit around it. Find the magnitude of the change in the velocity of the Sun relative to the center of mass of the system during the time Venus completes half an orbit. Assume the mass of the Sun is 5.68 x 1029 kg, the mass of Venus is 4.87 × 1024 kg, its period is 1.94 × 107 s, and the radius of its orbit is 1.08 × 1011 m. Ignore the influence of other celestial objects. m/sarrow_forwardYour physics instructor loves to put on physics magic shows for elementary school children. He is working on a new trick and has asked you, his star physics student, for assistance. The figure below shows the apparatus he is designing. Cup Hinged end - Support stick A small ball rests on a support so that the center of the ball is at the same height as the upper lip of a cup of negligible mass that is attached to a uniform board of length = 1.89 m. When the support stick is snatched away, the ball will fall and the board will rotate around the hinged end. As the board hits the table, your instructor wants the ball to fall into the cup. The larger the angle 0, the more time the elementary school children will have to watch the progress of the trick. But if the angle is too large, the cup may not pull ahead of the ball. For example, in the limiting case of 90°, the board would not fall at all! (a) Your instructor wishes to know the minimum angle 0 (in degrees) at which the support would…arrow_forward
- no ai pleasearrow_forward= Consider the schematic of the molecule shown, with two hydrogen atoms, H, bonded to an oxygen atom, O. The angle between the two bonds is 106°. If the bond length r 0.106 nm long, locate the center of mass of the molecule. The mass mH of the hydrogen atom is 1.008 u, and the mass mo of the oxygen atom is 15.9999 u. (Use a coordinate system centered in the oxygen atom, with the x-axis to the right and the y-axis upward. Give the coordinates of the center of mass in nm.) XCM YOM = = H 53° 53° nm nm r Harrow_forwardAn approximate model for a ceiling fan consists of a cylindrical disk with four thin rods extending from the disk's center, as in the figure below. The disk has mass 2.60 kg and radius 0.200 m. Each rod has mass 0.850 kg and is 0.700 m long. HINT (a) Find the ceiling fan's moment of inertia about a vertical axis through the disk's center. (Enter your answer in kg • m².) kg. m² (b) Friction exerts a constant torque of magnitude 0.113 N m on the fan as it rotates. Find the magnitude of the constant torque provided by the fan's motor if the fan starts from rest and takes 15.0 s and 17.5 full revolutions to reach its maximum speed. (Enter your answer in N. m.) N.marrow_forward
- A uniform, thin rod hangs vertically at rest from a frictionless axle attached to its top end. The rod has a mass of 0.780 kg and a length of 1.54 m. (Assume a coordinate system where the +y-direction is up and the +x-direction is to the right. The rod is free to swing about the axle in the x- y plane.) (a) You take a hammer and strike the bottom end of the rod. At the instant the hammer strikes, the force it applies to the rod is (15.71) N. What is the acceleration (in m/s²) of the rod's center of mass at this instant? (Express your answer in vector form.) m/s² a = (b) What is the horizontal force (in N) that the axle exerts on the rod at this same instant? (Express your answer in vector form.) F = N (c) The rod then returns to hanging at rest. You again strike the rod with the hammer, applying the same force, but now you strike it at its midpoint. What now is the acceleration of the center of mass (in m/s²) at the instant of impact? (Express your answer in vector form.) m/s² a = (d)…arrow_forwardFind the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 9.00 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.) N.m 10.0 N 30.0% 12.0 N 9.00 Narrow_forwardAn automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 16.5 cm Sidewall Ο 30.5 cm Tread i Enter a number. Find the moment of inertia of the sidewall and the moment of inertia of the tread region. Each can be modeled as a cylinder of nonzero thickness. What is the inner and outer radius for each case? What is the formula for the moment of inertia for a thick-walled cylinder? How can you find the mass of a hollow cylinder?…arrow_forward
- You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…arrow_forward2nd drop down is "up" or "down"arrow_forwardRomeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. (a) How far (in m) does the 81.0 kg boat move toward the shore it is facing? m (b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move? magnitude m direction ---Select---arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning