Exoplanets. As planets with a wide variety of properties are discovered outside our solar system, astrobiologists are considering whether and how life could evolve on planets that might be very different from earth. One recently discovered extrasolar planet, or exoplanet, orbits a star whose mass is 0.70 times the mass of our sun. This planet has been found to have 2.3 times the earth’s diameter and 7.9 times the earth’s mass. For planets in this size range, computer models indicate a relationship between density and composition: Density compared with that of the earth Composition 2–3 times Mostly iron 0.9–2 times Iron core with a rock mantle 0.4–0.9 times Iron core with a rock mantle and some lighter elements, such as (water) ice < 0.4 times Hydrogen and/or helium gas 56. Observations of this planet over time show that it is in a nearly circular orbit around its star and completes one orbit in only 9.5 days. How many times the orbital radius r of the earth around our sun is this exoplanet’s orbital radius around its sun? Assume that the earth is also in a nearly circular orbit. A. 0.026 r B. 0.078 r C. 0.70 r D. 2.3 r
Exoplanets. As planets with a wide variety of properties are discovered outside our solar system, astrobiologists are considering whether and how life could evolve on planets that might be very different from earth. One recently discovered extrasolar planet, or exoplanet, orbits a star whose mass is 0.70 times the mass of our sun. This planet has been found to have 2.3 times the earth’s diameter and 7.9 times the earth’s mass. For planets in this size range, computer models indicate a relationship between density and composition: Density compared with that of the earth Composition 2–3 times Mostly iron 0.9–2 times Iron core with a rock mantle 0.4–0.9 times Iron core with a rock mantle and some lighter elements, such as (water) ice < 0.4 times Hydrogen and/or helium gas 56. Observations of this planet over time show that it is in a nearly circular orbit around its star and completes one orbit in only 9.5 days. How many times the orbital radius r of the earth around our sun is this exoplanet’s orbital radius around its sun? Assume that the earth is also in a nearly circular orbit. A. 0.026 r B. 0.078 r C. 0.70 r D. 2.3 r
Exoplanets. As planets with a wide variety of properties are discovered outside our solar system, astrobiologists are considering whether and how life could evolve on planets that might be very different from earth. One recently discovered extrasolar planet, or exoplanet, orbits a star whose mass is 0.70 times the mass of our sun. This planet has been found to have 2.3 times the earth’s diameter and 7.9 times the earth’s mass. For planets in this size range, computer models indicate a relationship between density and composition:
Density compared with that of the earth
Composition
2–3 times
Mostly iron
0.9–2 times
Iron core with a rock mantle
0.4–0.9 times
Iron core with a rock mantle and some lighter elements, such as (water) ice
< 0.4 times
Hydrogen and/or helium gas
56. Observations of this planet over time show that it is in a nearly circular orbit around its star and completes one orbit in only 9.5 days. How many times the orbital radius r of the earth around our sun is this exoplanet’s orbital radius around its sun? Assume that the earth is also in a nearly circular orbit.
No chatgpt pls will upvote Already got wrong chatgpt answer
3.63 • Leaping the River II. A physics professor did daredevil
stunts in his spare time. His last stunt was an attempt to jump across
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower
than the top of the ramp. The river itself was 100 m below the ramp.
Ignore air resistance. (a) What should his speed have been at the top of
the ramp to have just made it to the edge of the far bank? (b) If his speed
was only half the value found in part (a), where did he land?
Figure P3.63
53.0°
100 m
40.0 m→
15.0 m
Please solve and answer the question correctly please. Thank you!!
Chapter 6 Solutions
College Physics Volume 1 (Chs. 1-16); Mastering Physics with Pearson eText -- ValuePack Access Card -- for College Physics (10th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.