
Concept explainers
Balance each of the following chemical equations.
msp;
msp;
msp;
msp;
msp;
msp;
msp;

(a)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided reaction is:
The most complicated molecule is not clear, so we start arbitrarily. If we place a coefficient of 2NaCl, we get a balanced equation.

(b)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The given unbalanced equation is:
We start with placing 3 before Fe and 4 before H2 O and H2 We get the balanced chemical reaction as follows:

(c)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The given unbalanced equation is:
We start by balancing HCl. If we place a coefficient 2 before HCl
If we place 2 before H2 O, we get a balanced chemical reaction as follows:

(d)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided equation is:
If we place a coefficient of 2 H2 O and HBr, we get a balanced equation.

(e)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided equation is:
We start with NaOH. To balance Na. If we place a coefficient of 3 before NaOH
To balance oxygen, we place 3 before H2 O. We get the balanced chemical reaction as follows:

(f)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided reaction is:
To balance oxygen, we can start by placing 2 before NaNO2 and NaNO3. Now, we already have a balanced equation.

(g)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided reaction is:
We start with balancing
Now we can place 4 before NaOH and 2 before H2 O. We have a balanced equation

(h)
Interpretation:
The given chemical equation is to be balanced.
Concept Introduction:
In a balanced chemical reaction, the number of similar type of elements on both sides of the reaction is equal. To balance an unbalanced equation, the coefficients that are present before the compounds are changed but the subscripts in the formulas are not changed.
Answer to Problem 40QAP
Explanation of Solution
The provided reaction is:
Now we place 4 before Si and we have a balanced equation.
Want to see more full solutions like this?
Chapter 6 Solutions
Introductory Chemistry: A Foundation
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: Pinacol (2,3-dimethyl, 1-3-butanediol) on treatment w/ acid gives a mixture of pina colone and (3,3-dimethyl-2-butanone) 2,3-dimethyl-1,3-butadiene. Give reasonable mechanism the formation of the products Forarrow_forwardShow the mechanism for these reactionsarrow_forwardDraw the stepwise mechanismarrow_forward
- Draw a structural formula of the principal product formed when benzonitrile is treated with each reagent. (a) H₂O (one equivalent), H₂SO₄, heat (b) H₂O (excess), H₂SO₄, heat (c) NaOH, H₂O, heat (d) LiAlH4, then H₂Oarrow_forwardDraw the stepwise mechanism for the reactionsarrow_forwardDraw stepwise mechanismarrow_forward
- Part I. Draw reaction mechanism for the transformations of benzophenone to benzopinacol to benzopinaco lone and answer the ff: a) Give the major reason for the exposure of benzophenone al isopropyl alcohol (w/acid) to direct sunlight of pina colone Mechanism For b) Pinacol (2,3-dimethy 1, 1-3-butanediol) on treatment w/ acid gives a mixture (3,3-dimethyl-2-butanone) and 2, 3-dimethyl-1,3-butadiene. Give reasonable the formation of the productsarrow_forwardwhat are the Iupac names for each structurearrow_forwardWhat are the IUPAC Names of all the compounds in the picture?arrow_forward
- 1) a) Give the dominant Intermolecular Force (IMF) in a sample of each of the following compounds. Please show your work. (8) SF2, CH,OH, C₂H₂ b) Based on your answers given above, list the compounds in order of their Boiling Point from low to high. (8)arrow_forward19.78 Write the products of the following sequences of reactions. Refer to your reaction road- maps to see how the combined reactions allow you to "navigate" between the different functional groups. Note that you will need your old Chapters 6-11 and Chapters 15-18 roadmaps along with your new Chapter 19 roadmap for these. (a) 1. BHS 2. H₂O₂ 3. H₂CrO4 4. SOCI₂ (b) 1. Cl₂/hv 2. KOLBU 3. H₂O, catalytic H₂SO4 4. H₂CrO4 Reaction Roadmap An alkene 5. EtOH 6.0.5 Equiv. NaOEt/EtOH 7. Mild H₂O An alkane 1.0 2. (CH3)₂S 3. H₂CrO (d) (c) 4. Excess EtOH, catalytic H₂SO OH 4. Mild H₂O* 5.0.5 Equiv. NaOEt/EtOH An alkene 6. Mild H₂O* A carboxylic acid 7. Mild H₂O* 1. SOC₁₂ 2. EtOH 3.0.5 Equiv. NaOEt/E:OH 5.1.0 Equiv. NaOEt 6. NH₂ (e) 1. 0.5 Equiv. NaOEt/EtOH 2. Mild H₂O* Br (f) i H An aldehyde 1. Catalytic NaOE/EtOH 2. H₂O*, heat 3. (CH,CH₂)₂Culi 4. Mild H₂O* 5.1.0 Equiv. LDA Br An ester 4. NaOH, H₂O 5. Mild H₂O* 6. Heat 7. MgBr 8. Mild H₂O* 7. Mild H₂O+arrow_forwardLi+ is a hard acid. With this in mind, which if the following compounds should be most soluble in water? Group of answer choices LiBr LiI LiF LiClarrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





