Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 3CQ
An object executes circular motion with constant speed whenever a net force of constant magnitude acts perpendicular to the velocity. What happens to the speed if the force is not perpendicular to the velocity?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An object executes circular motion with constant speed whenever a net force of constant magnitude acts perpendicular to the velocity. What happens to the speed if the force is not perpendicular to the velocity?
A small block with mass 0.0425 kg slides in a vertical
circle of radius 0.450 m on the inside of a circular
track During one of the revolutions of the block, when
the block is at the bottom of its path, point A, the
magnitude of the normal force exerted on the block by
the track has magnitude 3 85 N. In this same
revolution, when the block reaches the top of its path,
point B, the magnitude of the normal force exerted on
the block has magnitude 0575 N
Part A
How much work was done on the block by friction during the motion of the block from point A to point B
Express your answer with the appropriate units.
Writion 0.15
Submit
→
J
Previous Answers Request Answer
X Incorrect; Try Again: 2 attempts remaining
Check your signs
?
In uniform circular motion, the net force is perpendicular to the velocity and changes the direction of the velocity but not the speed. If a projectile is launched horizontally,the net force (ignoring air resistance) is perpendicular to the initial velocity, and yet the projectile gains speed as it falls. What is the difference between the two situations?
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 6.1 - You are riding on a Ferris wheel that is rotating...Ch. 6.2 - A bead slides at constant speed along a curved...Ch. 6.3 - Consider the passenger in the car making a left...Ch. 6.4 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - Prob. 1OQCh. 6 - Prob. 2OQCh. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - Prob. 5OQCh. 6 - An office door is given a sharp push and swings...
Ch. 6 - Prob. 7OQCh. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - Prob. 5CQCh. 6 - If someone told you that astronauts are weightless...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Why does a pilot tend to black out when pulling...Ch. 6 - A pail of water can be whirled in a vertical path...Ch. 6 - Prob. 1PCh. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - Prob. 7PCh. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Prob. 26PCh. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - Prob. 35PCh. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - Prob. 38APCh. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - Prob. 47APCh. 6 - Prob. 48APCh. 6 - Prob. 49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Prob. 55APCh. 6 - Prob. 56APCh. 6 - Prob. 57APCh. 6 - Review. A piece of putty is initially located at...Ch. 6 - Prob. 59APCh. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - Prob. 62APCh. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - Prob. 64APCh. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 69CPCh. 6 - Prob. 70CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A small block with mass 0.0500 kg slides in a vertical circle of radius 0.475 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.80 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0.665 N . How much work was done on the block by friction during the motion of the block from point A to point B?arrow_forwarda 0.25 kg stone tied to a rope is swung to make a circular motion in a vertical plane . If the circle is of radius 300cm, what is the minimum uniform speed of the stone that will keep the rope tautarrow_forwardA small block with mass 0.0300 kg slides in a vertical circle of radius 0.550 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.75 N. In this same revolution, when the block reaches the top of its path, point B, the magnitude of the normal force exerted on the block has magnitude 0.685 N. Part A How much work was done on the block by friction during the motion of the block from point A to point B? Express your answer with the appropriate units. W friction = Submit μA Value Request Answer Units ?arrow_forward
- A certain string can withstand a maximum tension of 40 N without breaking. A child ties a 0.37 kg stone to one end and, holding the other end, whirls the stone in a vertical circle of radius 0.91 m, slowly increasing the speed until the string breaks. (a) Where is the stone on its path when the string breaks? (b) What is the speed of the stone as the string breaks?arrow_forwardA roller-coaster car has a mass of 1220 kg when fully loaded with passengers. As the car passes over the top of a circular hill of radius 18.1 m, its speed is not changing. (a) At the top of the hill, what is the normal force (using the negative sign for the downward direction) FN on the car from the track if the car's speed is v- 9.49 m/s? (b) What is F if v- 16.7 m/s? (a) Number i (b) Number i Units Unitsarrow_forwardA car of mass m follows a truck of mass 3m around a circular turn. Both vehicles move at speed v. (a) What is the ratio of the truck s net centripetal force to the car s net centripetal force? (b) At what new speed vtruck will the net centripetal force acting on the truck equal the net centripetal force acting on the car still moving at the original speed varrow_forward
- Two blocks m1=5.6kg and m2= 3.7kg are sliding on a circular track with radius R=8.1m as shown in the figure below. If the two blocks are moving together without m2 sliding off of m, and their speed is v-16.9m/s, determine the normal force applied by the track to mj at the instant shown in the figure when the angle 8=14°. Express your answer in units of Newtons (N) using zero decimal places. Hint : Ignore the size of the blocks and take g=9.80 m/s?. R m2 myarrow_forwardA string under tension of 50.0 N is used to whirl a rock in a horizontal circle of radius 2.5 m at a speed of 20.4 m/s on a frictionless table. The string passes through a small hole in the table at the center of this circle. As the string is pulled in, the speed of the rock increases. When the string is 1.00 m long and the speed is 51.0 m/s, the string breaks. What is the breaking strength, in Newtons, of the string?arrow_forwardA 0.50-kg object moves on a horizontal frictionless circular track with a radius of 2.5 m. An external force of 3.0 N, always tangent to the track, causes the object to speed up as it goes around. If it starts from rest, then at the end of one revolution the radial component of the force of the track on it is:arrow_forward
- What is the maximum speed (in m/s) that a car with a mass of 370 kg can have at point B in order for its weight to hold it to the track? (Hint: treat the car's motion at point B like uniform circular motion; the weight of the car is providing the centripetal force. How fast can the car go while remaining in its circular path?)arrow_forwardA jet flying at 112 m/s banks to make a horizontal circular turn. The radius of the turn is 3810 m, and the mass of the jet is 1.74 x 105 kg. Calculate the magnitude of the necessary lifting force.arrow_forwardA point mass of 0.5 kg moving with a constant speed of 5 m/s on an elliptical track experiences an inward force of 10 N when at either end point of the major axis and a similar force of 1.25 N at each end of the minor axis. How long are the axes of the ellipse.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY