Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 5P
In a cyclotron (one type of particle accelerator), a deuteron (of mass 2.00 u) reaches a final speed of 10.0% of the
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Scientists design a new particle accelerator in which protons with mass m= 1.7x 10^−27 (kg) follow a circular trajectory given by r =ccos(kt^2)i+ csin(kt^2)j where c= 5.0 (m) and k= 8.0 x10^4 (radius/s^2) are constants and t is the elapsed time. a) what is the radius of the circle? b) what is the proton’s speed at t = 3.0 s?
c) what is the force on the proton at t = 3.0 s? Give your answer in component form.
A cyclotron is a machine that can be used to accelerate charged particles to achieve large kinetic energies. The resulting beams of highly energetic particles then can be used for many medical applications, including Proton Therapy (a more precise form of "radiation" used in the treatment of some cancers).
If a proton (of mass 1.673x10-27kg) is accelerated to its maximum velocity inside a dee with radius 4.46cm (this is the radius you would use for the "r" term in the centripetal acceleration), and if the magnetic field has a magnitude of 3.49x10-2T, what is the resulting velocity of the proton in units of km/s (kilometer per second)?
The radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, Rh = 2GM/c2, where M is the mass of the black hole and c is the speed of light.
Suppose that you wish to study a black hole near it, at a radial distance of 48Rh. However, you do not want the difference in gravitational acceleration between your feet and your head to exceed 10 m/s2 when you are feet down (or head down) toward the black hole.
(a) Take your height to be 1.5 m. What is the limit to the mass of the black hole you can tolerate at the given radial distance? Give the ratio of this mass to the mass MS of our Sun.
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 6.1 - You are riding on a Ferris wheel that is rotating...Ch. 6.2 - A bead slides at constant speed along a curved...Ch. 6.3 - Consider the passenger in the car making a left...Ch. 6.4 - A basketball and a 2-inch-diameter steel ball,...Ch. 6 - Prob. 1OQCh. 6 - Prob. 2OQCh. 6 - A door in a hospital has a pneumatic closer that...Ch. 6 - A pendulum consists of a small object called a bob...Ch. 6 - Prob. 5OQCh. 6 - An office door is given a sharp push and swings...
Ch. 6 - Prob. 7OQCh. 6 - Prob. 1CQCh. 6 - Prob. 2CQCh. 6 - An object executes circular motion with constant...Ch. 6 - Describe the path of a moving body in the event...Ch. 6 - Prob. 5CQCh. 6 - If someone told you that astronauts are weightless...Ch. 6 - Prob. 7CQCh. 6 - Prob. 8CQCh. 6 - Why does a pilot tend to black out when pulling...Ch. 6 - A pail of water can be whirled in a vertical path...Ch. 6 - Prob. 1PCh. 6 - Whenever two Apollo astronauts were on the surface...Ch. 6 - In the Bohr model of the hydrogen atom, an...Ch. 6 - A curve in a road forms part of a horizontal...Ch. 6 - In a cyclotron (one type of particle accelerator),...Ch. 6 - A car initially traveling eastward turns north by...Ch. 6 - Prob. 7PCh. 6 - Consider a conical pendulum (Fig. P6.8) with a bob...Ch. 6 - A coin placed 30.0 cm from the center of a...Ch. 6 - Why is the following situation impossible? The...Ch. 6 - Prob. 11PCh. 6 - Prob. 12PCh. 6 - Prob. 13PCh. 6 - A 40.0-kg child swings in a swing supported by two...Ch. 6 - Prob. 15PCh. 6 - Prob. 16PCh. 6 - A roller coaster at the Six Flags Great America...Ch. 6 - One end of a cord is fixed and a small 0.500-kg...Ch. 6 - An adventurous archeologist (m = 85.0 kg) tries to...Ch. 6 - An object of mass m = 5.00 kg, attached to a...Ch. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - A person stands on a scale in an elevator. As the...Ch. 6 - Review. A student, along with her backpack on the...Ch. 6 - A small container of water is placed on a...Ch. 6 - Prob. 26PCh. 6 - The mass of a sports car is 1 200 kg. The shape of...Ch. 6 - Prob. 28PCh. 6 - Prob. 29PCh. 6 - A small piece of Styrofoam packing material is...Ch. 6 - Prob. 31PCh. 6 - Prob. 32PCh. 6 - Assume the resistive force acting on a speed...Ch. 6 - Review. A window washer pulls a rubber squeegee...Ch. 6 - Prob. 35PCh. 6 - You can feel a force of air drag on your hand if...Ch. 6 - A car travels clockwise at constant speed around a...Ch. 6 - Prob. 38APCh. 6 - A string under a tension of 50.0 N is used to...Ch. 6 - Disturbed by speeding cars outside his workplace,...Ch. 6 - A car of mass m passes over a hump in a road that...Ch. 6 - A childs toy consists of a small wedge that has an...Ch. 6 - A seaplane of total mass m lands on a lake with...Ch. 6 - An object of mass m1 = 4.00 kg is tied to an...Ch. 6 - A ball of mass m = 0.275 kg swings in a vertical...Ch. 6 - Why is the following situation impossible? A...Ch. 6 - Prob. 47APCh. 6 - Prob. 48APCh. 6 - Prob. 49APCh. 6 - A basin surrounding a drain has the shape of a...Ch. 6 - A truck is moving with constant acceleration a up...Ch. 6 - The pilot of an airplane executes a loop-the-loop...Ch. 6 - Review. While learning to drive, you arc in a 1...Ch. 6 - A puck of mass m1 is tied to a string and allowed...Ch. 6 - Prob. 55APCh. 6 - Prob. 56APCh. 6 - Prob. 57APCh. 6 - Review. A piece of putty is initially located at...Ch. 6 - Prob. 59APCh. 6 - Members of a skydiving club were given the...Ch. 6 - A car rounds a banked curve as discussed in...Ch. 6 - Prob. 62APCh. 6 - A model airplane of mass 0.750 kg flies with a...Ch. 6 - Prob. 64APCh. 6 - A 9.00-kg object starting from rest falls through...Ch. 6 - For t 0, an object of mass m experiences no force...Ch. 6 - A golfer tees off from a location precisely at i =...Ch. 6 - A single bead can slide with negligible friction...Ch. 6 - Prob. 69CPCh. 6 - Prob. 70CP
Additional Science Textbook Solutions
Find more solutions based on key concepts
The validity of a scientific law.
The Physical Universe
56. Global Positioning System. Learn more about the global positioning system and its uses. Write a short repo...
The Cosmic Perspective (8th Edition)
7. (II) (a) What is the current in the element of an electric clothes dryer with a resistance of 8.6 ?when it i...
Physics: Principles with Applications
You have a summer job at your universitys zoology department, where youll be working with an animal behavior ex...
Essential University Physics: Volume 1 (3rd Edition)
What is a concept?
Integrated Science
60. The solar system is 25,000 light years from the center of our Milky Way galaxy. One light year is the dista...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The radius Rh of a black hole is the radius of a mathematical sphere, called the event horizon, that is centered on the black hole. Information from events inside the event horizon cannot reach the outside world. According to Einstein's general theory of relativity, Rh = 2GM/c2, where M is the mass of the black hole and c is the speed of light. Suppose that you wish to study a black hole near it, at a radial distance of 48Rh. However, you do not want the difference in gravitational acceleration between your feet and your head to exceed 10 m/s2 when you are feet down (or head down) toward the black hole. (a) Take your height to be 1.5 m. What is the limit to the mass of the black hole you can tolerate at the given radial distance? Give the ratio of this mass to the mass MS of our Sun. (b) Is the ratio an upper limit estimate or a lower limit estimate?arrow_forwardEinstein concluded that gravity is the warping of the geometry of space-time based on the presence of matter. He published this theory—known as the general theory of relativity—in 1915. Einstein based the theory entirely on mathematics. He suggested a way of putting it to the test. He knew that the sun has a strong gravitational field. Its mass (about 1.99 × 10 30 kilograms) should not only affect the orbits of its planets but anything nearby. According to relativity, the sun’s gravitational field should bend light traveling to Earth from distant stars. Explain this in simpler terms.arrow_forwardAn asteroid, headed directly toward Earth, has a speed of 12 km/s relative to the planet when the asteroid is 10 Earth radii from Earth’s center. Neglecting the effects of Earth’s atmosphere on the asteroid, find the asteroid’s speed v when it reaches Earth’s surface.arrow_forward
- The proton is traveling at a constant speed of 5.5 × 105 m/s, and the radius of the kissing circle is 0.02 m. The mass of a proton is 1.7 × 10-27 kg. When the proton is at location A, what are the magnitude and direction (d|p→|/dt)(p^) of the parallel component of dp→/dt?arrow_forwardA solid copper sphere of mass M and radius R has a cavity of radius ½ R. Inside the cavity a particle of mass m placed a distance d > R from the center of the sphere along the line connecting the centers of the sphere and the cavity. Find the gravitational force on m.arrow_forwardOne of your summer lunar space camp activities is to launch a 1130 kg rocket from the surface of the Moon. You are a serious space camper and you launch a serious rocket: it reaches an altitude of 217 km. What gain AU in gravitational potential energy does the launch accomplish? The mass and radius of the Moon are 7.36 × 1022 kg and 1740 km, respectively. AU = Jarrow_forward
- The CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m = 1.67 × 10−27 kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 × 108 m/s. ) (b) What is the force on the protons?arrow_forwardSuppose a lump of ionized matter orbits a black hole with a period of 3.50 ms and an orbital radius of 140 km. What is the mass of the black hole? The mass of the sun is Ms = 1.99 x10^30 kg. (Give your answer in terms of the solar mass.) A projectile is launched directly upward from the surface of the Earth with an initial speed of 7.1 km/s. Assuming air resistance is negligible, what is the maximum height of the projectile (in m)?arrow_forwardIn order to rendezvous with an asteroid passing close to the earth, a spacecraft must be moving at 8.50 * 10^3 m/s relative to the earth at a distance of 2.50 * 10^8 m from the center of the earth. At what speed must this spacecraft be launched from the earth’s surface? Neglect air resistance and the gravitational pull of the moon.arrow_forward
- You are on a space station, in a circular orbit h = 500 km above the surface of the Earth. You complete your tasks several days early and must wait for the next mission from the surface to bring you home. After days of boredom, you decide to play some golf. Walking on the space station surface with magnetic shoes, you tee up a golf ball. You hit it with all of your might, sending it off with speed υrel, relative to the space station, in a direction parallel to the velocity vector of the space station at the moment the ball is hit. You notice that you then orbit the Earth exactly n = 2.00 times and you reach up and catch the golf ball as it returns to the space station. With what speed υrel was the golf ball hit?arrow_forwardIn the simple Bohr model of the ground state of the hydrogen atom, the electron travels in a circular orbit around a fixed proton. The radius of the orbit is 5.28 × 10−11 m, and the speed of the electron is 2.18 × 106 m/s. The mass of an electron is 9.11 × 10−31 kg . What is the force on the electron?arrow_forwardThe mass of an electron is m=9.11*10^-31 kg. The mass of a proton is m=1.67*10^-27 kg. They are about 5.29*10^-11 m apart in a hydrogen atom. What gravitational force exists between the proton and electron of a hydrogen atom?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY