Structural Analysis, 5th Edition
Structural Analysis, 5th Edition
5th Edition
ISBN: 9788131520444
Author: Aslam Kassimali
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 6, Problem 33P
To determine

Find the slope θB&θD and deflection ΔB&ΔD at point B and D of the given beam using the moment-area method.

Expert Solution & Answer
Check Mark

Answer to Problem 33P

The slope θB  at point B of the given beam using the moment-area method is 0.0099rad(Clockwise)_.

The deflection ΔB at point B of the given beam using the moment-area method is 0.86in.()_.

The slope θD at point D of the given beam using the moment-area method is 0.0084rad(Counterclockwise)_.

The deflection ΔD at point D of the given beam using the moment-area method is 1.44in.()_.

Explanation of Solution

Given information:

The Young’s modulus (E) is 29,000 ksi.

The moment of inertia (I) is 6,000in.4.

Calculation:

Consider flexural rigidity EI of the beam is constant.

Show the free body diagram of the given beam as in Figure (1).

Structural Analysis, 5th Edition, Chapter 6, Problem 33P , additional homework tip  1

Refer Figure (1),

Consider upward is force is positive and downward force is negative.

Consider clockwise moment is negative and counterclockwise moment is positive.

Split the given beam into two sections such as AC and CE.

Consider the portion CE:

Draw the free body diagram of the portion CE as in Figure (2).

Structural Analysis, 5th Edition, Chapter 6, Problem 33P , additional homework tip  2

Refer Figure (2),

Consider a reaction at C and take moment about point C.

Determine the reaction at E;

RE×(24)(40×12)+250=0RE=23024RE=9.58kips

Determine the reaction at support A;

V=0RA+RE7540=0RA=1159.58RA=105.42kips

Show the reaction of the given beam as in Figure (3).

Structural Analysis, 5th Edition, Chapter 6, Problem 33P , additional homework tip  3

Refer Figure (3),

Determine the moment at A:

MA=(9.58×48)+250(40×36)(75×12)=709.842,3401,630kips-ft

Determine the bending moment at B;

MB=(9.58×36)+250(40×24)=344.88+250960365kips-ft

Determine the bending moment at C;

MC=(9.58×24)+250(40×12)=479.924800

Determine the bending moment at D;

MD=(9.58×12)+250365kips-ft

Determine the bending moment at E;

ME=250kips-ft

Show the M/EI diagram for the given beam as in Figure (4).

Structural Analysis, 5th Edition, Chapter 6, Problem 33P , additional homework tip  4

Show the elastic curve diagram as in Figure (5).

Structural Analysis, 5th Edition, Chapter 6, Problem 33P , additional homework tip  5

Refer Figure (4),

Determine the slope at B;

θB=θBA=AreaoftheMEIdiagrambetweenAandB=(12×b1×h1+12×b2×h2)

Here, b is the width and h is the height of respective triangle.

Substitute 12 ft for b1, 1,630EI for h1, 12 ft for b2, and 365EI for h2.

θB=θBA=[(12×12×1,630EI)+(12×12×365EI)]=1EI(1,630+3652)12=11,970kips-ft2EI

Substitute 29,000 ksi for E and 6,000in.4 for I.

θB=11,970kips-ft2×(12in.1ft)229,000×6,000=0.0099rad=0.0099(Clockwise)

Hence, the slope at B is 0.0099rad(Clockwise)_.

Determine the deflection between A and B using the relation;

ΔB=ΔBA=MomentoftheareaoftheM/EIdiagrambetweenBandAaboutA=[(b1h1)(b12)+(12b2h2)(23×b2)]

Here, b1 is the width of rectangle, h1 is the height of the rectangle, b2 is the width of the triangle, and h2 is the height of the triangle.

Substitute 12 ft for b1, 365EI for h1, 12 ft for b2, and (1,630EI365EI) for h2.

ΔB=ΔBA=[(12×365EI)(122)+12×12×(1,630EI365EI)(23×12)]=87,000kipsft3EI

Substitute 29,000 ksi for E and 6,000in.4 for I.

ΔB=ΔBA=87,000kipsft3×(12in.1ft)329,000×6,000=0.864in.0.86in.()

Hence, the deflection at B is 0.86in.()_.

To determine the slope at point E, it is necessary to determine the deflection at point C and the deflection between C and E.

Determine the deflection at C and A using the relation;

ΔC=ΔCA=MomentoftheareaoftheM/EIdiagrambetweenCandAaboutA=[(b1h1)(12+b12)+(12b2h2)(12+23×b2)+(12b3h3)(23×b3)]

Substitute 12 ft for b1, 365EI for h1, 12 ft for b2, (1,630EI365EI) for h2, 12 for b3, and 365EI for h3.

ΔC=ΔCA=[(12×365EI)(12+122)+(12×12×(1,630EI365EI))(12+23×12)+(12×12×365EI)(23×12)]=248,160kips-ft3EI

Determine the deflection between C and E using the relation;

ΔCE=MomentoftheareaoftheM/EIdiagrambetweenCandEaboutE=[(12b1h1)(23×b1)+(b2h2)(12+b22)+(12b3h3)(12+13×b3)]

Substitute 12 ft for b1, 365EI for h1, 12 ft for b2, 250EI for h2, 12 ft for b3, and (365EI250EI) for h3.

ΔCE=[(12×12×365EI)(23×12)+(12×250EI)(12+122)+(12×12×(365EI250EI))(12+13×12)]=82,560kips-ft3EI

Determine the slope at E using the relation;

θE=ΔC+ΔCELCE

Here, LCE is the length between C and E.

Substitute 248,160kips-ft3EI for ΔC, 82,560kips-ft3EI for ΔCE, and 24 ft for LCE.

θE=248,160kips-ft3EI+(82,560kips-ft3EI)24=13,780kips-ft2EI

Determine the slope between D and E using the relation;

θDE=AreaoftheMEIdiagrambetweenDandE=(12×b1×h1+12×b2×h2)

Here, b is the width and h is the height of respective triangle.

Substitute 12 ft for b1, 365EI for h1, 12 ft for b2, and 250EI for h2.

θDE=[(12×12×365EI)+(12×12×250EI)]=1EI(365+2502)12=3,690kips-ft2EI

Determine the slope at D using the relation;

θD=θEθDE

Substitute 3,690kips-ft2EI for θE and 3,690kips-ft2EI for θDE.

θD=13,780kips-ft2EI(3,690kips-ft2EI)=10,090kips-ft2EI

Substitute 29,000 ksi for E and 6,000in.4 for I.

θD=10,090kips-ft2×(12in.1ft)229,000×6,000=0.00835rad0.0084rad(Counterclockwise)

Hence, the slope at D is 0.0084rad(Counterclockwise)_.

Determine the deflection between D and E using the relation;

ΔDE=MomentoftheareaoftheM/EIdiagrambetweenDandEaboutE=[(b1h1)(b12)+(12b2h2)(13×b2)]

Here, b is the width and h is the height of respective rectangle and triangle.

Substitute 12 ft for b1, 250EI for h1, 12 for b2, and (365EI250EI) for h2.

ΔDE=[(12×250EI)(122)+(12×12×(365EI250EI))(13×12)]=20,760kips-ft3EI

Determine the deflection at D using the relation;

ΔD=LDEθEΔDE

Substitute 12 ft for LDE, 13,780kips-ft2EI for θE, and 20,760kips-ft3EI for ΔDE.

ΔD=12(13,780kips-ft2EI)(20,760kips-ft3EI)=165,360+20,760EI=144,600kips-ft3EI

Substitute 29,000 ksi for E and 6,000in.4 for I.

ΔD=144,600kips-ft3×(12in.1ft)329,000×6,000=1.44in.=1.44in.()

Hence, the deflection at point D is 1.44in.()_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
1. Plot the SWRC (suction vs. volumetric water content) from the van Genuchten (1980) model for the following “base-case” parameters (assume m = 1-1/nvG): alpha vG = 0.35 kPa-1, nvG = 2.2,Delta res = 0.02, and delta S = delta sat = 0.45. These values are approximately representative of a sand.Perform a sensitivity analysis on each of the base case parameters (i.e., vary each by ±10% while holding the other three constant) to determine their relative effects on the SWRC. For example, how would a change in s alter the curve if the other base case parameters stay the same? In your answer, provide 4 plots for the parametric evaluation of each parameter as well as a brief qualitative explanation for each plot (for example, when investigating the effect of alpha vG, show the base-case curve and the curves with different values of alpha vG on the same plot). Be sure that suction is plotted on a logarithmic scale. Also, discuss how theparameters of the van Genuchten SWRC model might differ…
Using AutoCAD and exact measure that number
A fully grouted reinforced masonry wall is to be constructed of 8-in. CMU. The wall height is 18feet. It is assumed to be simply supported. The wall is to be designed for an out-of-plane seismicload of 52 lbs./ft.2, which can act in either direction. The wall also supports a roof dead load of600 lbs./ft. and a roof live load of 300 lbs./ft. along the wall length. The roof loads have aneccentricity of 2.5 inches. Since there is seismic load, load combinations (6) and (7) in Chapter 2of ASCE 7-22 should be considered. In these two load combinations,horizontal seismic loadhE =andvertical seismic loadvE = . You may ignorevE in this problem for simplicity. The masonryhas a specified compressive strength of 2,500 psi. (a) Use the strength design provisions of TMS402 to determine the size and spacing of the vertical bars needed. Use the P-δ analysis method inSection 9.3.4.4.2 of TMS 402 to determine Mu. (b) Repeat the design using the momentmagnification method in Section 9.3.4.4.3 instead.…
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Structural Analysis
    Civil Engineering
    ISBN:9781337630931
    Author:KASSIMALI, Aslam.
    Publisher:Cengage,
Text book image
Structural Analysis
Civil Engineering
ISBN:9781337630931
Author:KASSIMALI, Aslam.
Publisher:Cengage,