Concept explainers
A ball of mass m = 0.275 kg swings in a vertical circular path on a string L = 0.850 in long as in Figure P6.31. (a) What are the forces acting on the ball at any point on the path? (b) Draw force diagrams for the ball when it is at the bottom of the circle and when it is at the top. (c) If its speed is 5.20 m/s at the top of the circle, what is the tension in the string there? (d) If the string breaks when its tension exceeds 22.5 N, what is the maximum speed the ball can have at the bottom before that happens?
Figure P6.31
Trending nowThis is a popular solution!
Chapter 6 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Additional Science Textbook Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
College Physics: A Strategic Approach (4th Edition)
Glencoe Physics: Principles and Problems, Student Edition
College Physics (10th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
- Instead of moving back and forth, a conical pendulum moves in a circle at constant speed as its string traces out a cone (Fig. P6.68). One such pendulum is constructed with a string of length L = 12.0cm and bob of mass 0.210 kg. The string makes an angle = 7.00 with the vertical, a. What is the radial acceleration of the bob? b. What are the horizontal and vertical components of the tension force exerted by the string on the bob?arrow_forwardA car of mass m passes over a hump in a road that follows the arc of a circle of radius R as shown. (a) If the car travels at a speed υ, what force does the road exert on the car as the car passes the highest point of the hump? (b) What If? What is the maximum speed the car can have without losing contact with the road as it passes this highest point?arrow_forwardA 0.5 kg object moves in a horizontal circular track with a radius of 2.5 m. An external force of 3.0 N, acting always tangent to the track, causes the object to speed up as it goes around. If it starts from rest, its speed at the end of one revolution is:arrow_forward
- small block with mass 0.0500 kg slides in a vertical circle of radius R = 0.800 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block’s path, the normal force the track exerts on the block has magnitude 3.40 N. What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?arrow_forwardA roller coaster at an amusement park has a dip that bottoms out in a vertical circle of radius r. A passenger feels the seat of the car pushing upward on her with a force equal to four times her weight as she goes through the dip. If r = 16.5 m, how fast is the roller coaster traveling at the bottom of the dip?arrow_forwardPlease Asaparrow_forward
- A 3.00-kg block is placed at the top of a track consisting of two frictionless quarter circles of radius ?=3.00 m connected by a 5.00-m-long, straight, horizontal surface as shown in the figure. The coefficient of kinetic friction between the block and the horizontal surface is ?k=0.100. The block is released from rest. What maximum vertical height ? does the block reach on the right‑hand section of the track? y = ? (in m)arrow_forwardA roller coaster car passes the top of an 8 m radius vertical loop. At this point the normal force exerted on the passengers by the seat is ¼ their weight. Find the speed of the roller coaster car at this point. Group of answer choices 7 m/s 15 m/s 13 m/s 10 m/sarrow_forwardSuppose that a 1800 kg car passes over a bump in a roadway that follows the arc of a circle of radius 21.4 m as in the figure below. (a) What force does the road exert on the car as the car passes the highest point of the bump if the car travels at 31.0 km/h? (Neglect friction.) (b) What is the maximum speed the car can have without losing contact with the road as it passes this highest point? km/harrow_forward
- Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly hump") and had it installed. Suppose a 1 800-kg car passes over a hump in a roadway that follows the arc of a circle of radius 19.6 m (a) If the car travels at 25.0 km/h what force does the road exert on the car as the car passes the highest point of the hump? magnitude N direction (b) What is the maximum speed the car can have without losing contact with the road as it passes this highest point?arrow_forwardAnd don't worry about whether the passengers would actually survive the trip. They are lightweight crash test dummies. NTC A cart of mass m= 347 kg is going around a circular loop-the-loop. There is no motor. The cart moves only under the influence of gravity. Ignore friction and let g = 9.81 meters per second squared. The loop has a radius of r meters. When the cart is at the top of the loop, the normal force on the cart (exerted by the track) pushes down on the cart with a force of N = 1,330 newtons. When it is at the bottom of the loop, the cart has a speed of 30.7 meters per second. What is the radius of the loop (in units of meters)?arrow_forwardA father places his 20 kg child on a 5.0 kg cart, to which a 2.0 m rope is attached. He then holds the rope and spins the cart in a circle around him, keeping the rope parallel to the ground. If the Tension in the rope is 100 N, what is the cart’s speed v? Neglect friction.arrow_forward
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning