Concept explainers
A car rounds a banked curve as discussed in Example 6.4 and shown in Figure 6.5. The radius of curvature of the road is R, the banking angle is θ, and the coefficient of static friction is μs. (a) Determine the range of speeds the car can have without slipping up or down the road. (b) Find the minimum value for μs such that the minimum speed is zero.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Bundle: Physics For Scientists And Engineers With Modern Physics, 10th + Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Multi-term
Additional Science Textbook Solutions
Essential University Physics: Volume 1 (3rd Edition)
Physics (5th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Introduction To Health Physics
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Conceptual Physics (12th Edition)
- A car takes a 100 m radius curve with a bank angle of 15° and a friction coefficient of 0.78. Determine the maximum speed that the car can take the curve. Use g = 10 m/s/s. Hint: This is a difficult problem. If you do some searching on the internet you should find an equation for speed as a function of bank angle and friction coefficient. Try to follow the derivation.arrow_forwardJustin is driving his 1500-kg Camaro through a horizontal curve on a level roadway at a speed of 23 m/s. The turning radius of the curve is 65 m. Determine the minimum value of the coefficient of friction which would be required to keep Justin's car on the curve.arrow_forwardTwo banked curves have the same radius. Curve A is banked at 12.6%, and curve B is banked at an angle of 19.0%. A car can travel around curve A without relying on friction at a speed of 10.7 m/s. At what speed can this car travel around curve B without relying on friction?arrow_forward
- A bicyclist is riding on the banked curve of a circular velodrome. The radius of curvature for the bicyclist's present position is R = 355 m. The coefficient of static friction between the wheels and the path is us= 0.35. For which range of velocities will the bicyclist remain at the same height on the banked curve?arrow_forwardA car enters a horizontal, curved roadbed of radius 50 m. The coefficient of static friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate the unbanked curve?arrow_forwardAs you are riding in a 1650-kg car, you approach a N7M.8 hairpin curve in the road whose radius is 50 m. The road- bed is banked inward at an angle of 10° (a) Suppose the road is very icy, so that the coefficient of static friction is essentially zero. What is the maximum speed at which you can go around the curve? (b) Now suppose the road is dry and that the static friction coefficient between the tires and the asphalt road is 0.6. What is the maximum speed at which you can safely go around the curve?arrow_forward
- A car is driving along a circular track with diameter d = 0.59km at a constant speed of v = 21.2 m/s. Write an expression and find the value for the minimum coefficient of friction between the cars tires and road required in order to keep the car going in a circle in terms of the given parameters.arrow_forwardA Wall of Death is a carnival show featuring a motorcyclist rides along the vertical wall of the cylinder and performs various stunts while doing so. Given that the radius of the cylinder is 7 m and the static coefficient of friction is 0.8, what is the minimum speed in m/s2 that the motorcyclist must do to prevent the motorcycle to slip from the wall?arrow_forwardA car enters a horizontal, curved roadbed of radius 50.0 m. The coefficient of slatic friction between the tires and the roadbed is 0.20. What is the maximum speed with which the car can safely negotiate the unbanked curve?arrow_forward
- A 0.5 kg object moves in a horizontal circular track with a radius of 2.5 m. An external force of 3.0 N, acting always tangent to the track, causes the object to speed up as it goes around. If it starts from rest, its speed at the end of one revolution is:arrow_forwardA car rounds an unbanked (level) curve of radius 76 m. If the coefficient of static friction between the road and car is 0.56, what is the maximum speed at which the car traverses the curve without slipping? V= Question Help: m/s Submit Question Hint 1 Readarrow_forwardA curve on a flat road has curvature radius 123 mm, and a caution sign urges drivers to slow to 60 km/hkm/h before negotiating the curve. Find the minimum frictional coefficient safe for driving at this speed along the curve of the road.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON