Physics for Scientists and Engineers with Modern Physics
Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 6, Problem 1Q

Does an apple exert a gravitational force on the Earth? If so, how large a force? Consider an apple (a) attached to a tree and (b) falling.

(a)

Expert Solution
Check Mark
To determine

Whether an apple exerts force on the Earth, if yes the magnitude of the force while considering an apple attached to a tree.

Answer to Problem 1Q

The apple exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.

Explanation of Solution

According to newton’s third law of motion, for every action there will be equal and opposite reaction and the action and reaction are acting on different bodies. The Earth attracts every object towards its center. The force is equal gravitational attractional force.

According to universal theory of gravitation, Earth attracts apple with magnitude equal to Fapple=GMEmappler2 where, G is the universal gravitational constant, ME is the mass of the Earth, mapple is the mass of the apple and r is the distance between center of Earth and apple. Newton’s third law implies that force acting on Earth by apple is equal to force that Earth exerts on apple.

Conclusion:

Therefore, the apple exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.

(b)

Expert Solution
Check Mark
To determine

Whether an apple exerts force on the Earth, if yes the magnitude of the force while considering the apple is falling.

Answer to Problem 1Q

The apple which is free fall exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.

Explanation of Solution

Universal gravitational law states that every object in the universe attracts every other object with a force which is equal to product of their masses and square of the distance between them.

At each point of motion the gravitational force of attraction increases due to decreasing separation. The Earth attracts the apple which is falling at each time of motion. Then according to Newton’s third law of motion, the apple exerts equal force on the Earth.

Conclusion:

Therefore, the apple which is free fall exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
03:12
Students have asked these similar questions
(a) A luggage carousel at an airport has the form of a section of a large cone, steadily rotating about its vertical axis. Its metallic surface slopes downward toward the outside, making an angle of 24.5° with the horizontal. A 30.0-kg piece of luggage is placed on the carousel, 7.46 m from the axis of rotation. The travel bag goes around once in 37.5 s. Calculate the magnitude of the force of static friction between the bag and the carousel. N (b) The drive motor is shifted to turn the carousel at a higher constant rate of rotation, and the piece of luggage is bumped to a position 7.94 m from the axis of rotation. The bag is on the verge of slipping as it goes around once every 30.5 s. Calculate the coefficient of static friction between the bag and the carousel.
Shown below is a waterslide constructed in the late 1800's. This slide was unique for its time due to the fact that a large number of small wheels along its length made friction negligible. Riders rode a small sled down the chute which ended with a horizontal section that caused the sled and rider to skim across the water much like a flat pebble. The chute was 9.76 m high at the top and 54.3 m long. Consider a rider and sled with a combined mass of 81.0 kg. They are pushed off the top of the slide from point A with a speed of 2.90 m/s, and they skim horizontally across the water a distance of 50 m before coming to rest. 9.76 m Engraving from Scientific American, July 1888 A (a) 20.0 m -54.3 m 50.0 m (b) (a) Find the speed (in m/s) of the sled and rider at point C. m/s (b) Model the force of water friction as a constant retarding force acting on a particle. Find the magnitude (in N) of the friction force the water exerts on the sled. N (c) Find the magnitude (in N) of the force the…
You have an internship working at a company that designs and produces washing and drying equipment. Your supervisor is in the process of designing a new, very large dryer to be used in commercial establishments with intense laundry needs, such as restaurants (tablecloths, napkins) and hotels (sheets, towels). In a dryer, a cylindrical tub containing wet material is rotated steadily about a horizontal axis as shown in the figure below. 0 So that the material will dry uniformly, it is made to tumble. The rate of rotation of the smooth-walled tub is chosen so that a small piece of cloth will lose contact with the tub when the cloth is at an angle of 0 = 71.0° above the horizontal. Your supervisor's tub is designed to have a radius of r = 1.23 m and she asks you to determine the appropriate rate of revolution. (Give your answer in rev/min.) rev/min

Chapter 6 Solutions

Physics for Scientists and Engineers with Modern Physics

Ch. 6 - If it were possible to drill a hole all the way...Ch. 6 - A satellite in a geosynchronous orbit stays over...Ch. 6 - Which pulls harder gravitationally, the Earth on...Ch. 6 - Would it require less speed to launch a satellite...Ch. 6 - An antenna loosens and becomes detached from a...Ch. 6 - Describe how careful measurements of the variation...Ch. 6 - The Sun is below us at midnight, nearly in line...Ch. 6 - When will your apparent weight be the greatest, as...Ch. 6 - If the Earths mass were double what it actually...Ch. 6 - The source of the Mississippi River is closer to...Ch. 6 - People sometimes ask. What keeps a satellite up in...Ch. 6 - Explain how a runner experiences free fall or...Ch. 6 - If you were in a satellite orbiting the Earth, how...Ch. 6 - Is the centripetal acceleration of Mars in its...Ch. 6 - The mass of the planet Pluto was not known until...Ch. 6 - The Earth moves faster in its orbit around the Sun...Ch. 6 - Keplers laws tell us that a planet moves faster...Ch. 6 - Does your body directly sense a gravitational...Ch. 6 - Discuss the conceptual differences between g as...Ch. 6 - (I) Calculate the force of Earths gravity on a...Ch. 6 - (I) Calculate the acceleration due to gravity on...Ch. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - (II) Calculate the effective value of g, the...Ch. 6 - (II) You are explaining to friends why astronauts...Ch. 6 - Prob. 8PCh. 6 - (II) Four 8.5-kg spheres are located at the...Ch. 6 - (II) Two objects attract each other...Ch. 6 - (II) Four masses are arranged as shown in Fig....Ch. 6 - (II) Estimate the acceleration due to gravity at...Ch. 6 - (II) Suppose the mass of the Earth were doubled,...Ch. 6 - Prob. 14PCh. 6 - (II) At what distance from the Earth will a...Ch. 6 - (II) Determine the mass of the Sun using the known...Ch. 6 - (II) Two identical point masses, each of mass M,...Ch. 6 - Prob. 18PCh. 6 - (III) (a) Use the binomial expansion...Ch. 6 - Prob. 20PCh. 6 - Prob. 21PCh. 6 - Prob. 22PCh. 6 - Prob. 23PCh. 6 - Prob. 24PCh. 6 - (II) You know your mass is 65 kg, but when you...Ch. 6 - (II) A 13.0-kg monkey hangs from a cord suspended...Ch. 6 - (II) Calculate the period of a satellite orbiting...Ch. 6 - Prob. 28PCh. 6 - (II) What will a spring scale read for the weight...Ch. 6 - Prob. 30PCh. 6 - (II) What is the apparent weight of a 75-kg...Ch. 6 - (II) A Ferris wheel 22.0 m in diameter rotates...Ch. 6 - Prob. 33PCh. 6 - Prob. 34PCh. 6 - Prob. 35PCh. 6 - (III) An inclined plane, fixed to the inside of an...Ch. 6 - (I) Use Keplers laws and the period of the Moon...Ch. 6 - (I) Determine the mass of the Earth from the known...Ch. 6 - (I) Neptune is an average distance of 4.5109 km...Ch. 6 - (II) Planet A and planet B are in circular orbits...Ch. 6 - (II) Our Sun rotates about the center of our...Ch. 6 - (II) Table 63 gives the mean distance, period, and...Ch. 6 - (II) Determine the mean distance from Jupiter for...Ch. 6 - (II) The asteroid belt between Mars and Jupiter...Ch. 6 - (III) The comet Hale-Bopp has a period of 2400...Ch. 6 - Prob. 46PCh. 6 - (III) The orbital periods and mean orbital...Ch. 6 - (II) What is the magnitude and direction of the...Ch. 6 - (II) (a) What is the gravitational field at the...Ch. 6 - Prob. 50PCh. 6 - How far above the Earths surface will the...Ch. 6 - At the surface of a certain planet, the...Ch. 6 - A certain white dwarf star was once an average...Ch. 6 - What is the distance from the Earths center to a...Ch. 6 - The rings of Saturn are composed of chunks of ice...Ch. 6 - During an Apollo lunar landing mission, the...Ch. 6 - Prob. 57GPCh. 6 - Prob. 58GPCh. 6 - Jupiter is about 320 limes as massive as the...Ch. 6 - The Sun rotates about the center of the Milky Way...Ch. 6 - Prob. 61GPCh. 6 - A satellite of mass 5500 kg orbits the Earth and...Ch. 6 - Show that the rate of change of your weight is...Ch. 6 - Astronomers using the Hubble Space Telescope...Ch. 6 - Suppose all the mass of the Earth were compacted...Ch. 6 - A plumb bob (a mass m hanging on a string) is...Ch. 6 - A geologist searching for oil finds that the...Ch. 6 - Prob. 68GPCh. 6 - A science-fiction tale describes an artificial...Ch. 6 - How long would a day be if the Earth were rotating...Ch. 6 - An asteroid of mass m is in a circular orbit of...Ch. 6 - Newton had the data listed in Table 64, plus the...Ch. 6 - A satellite circles a spherical planet of unknown...Ch. 6 - Prob. 74GPCh. 6 - The gravitational force at different places on...Ch. 6 - Prob. 76GPCh. 6 - Estimate the value of the gravitational constant G...Ch. 6 - Between the orbits of Mars and Jupiter, several...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY