
Concept explainers
Does an apple exert a gravitational force on the Earth? If so, how large a force? Consider an apple (a) attached to a tree and (b) falling.
(a)

Whether an apple exerts force on the Earth, if yes the magnitude of the force while considering an apple attached to a tree.
Answer to Problem 1Q
The apple exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.
Explanation of Solution
According to newton’s third law of motion, for every action there will be equal and opposite reaction and the action and reaction are acting on different bodies. The Earth attracts every object towards its center. The force is equal gravitational attractional force.
According to universal theory of gravitation, Earth attracts apple with magnitude equal to
Conclusion:
Therefore, the apple exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.
(b)

Whether an apple exerts force on the Earth, if yes the magnitude of the force while considering the apple is falling.
Answer to Problem 1Q
The apple which is free fall exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.
Explanation of Solution
Universal gravitational law states that every object in the universe attracts every other object with a force which is equal to product of their masses and square of the distance between them.
At each point of motion the gravitational force of attraction increases due to decreasing separation. The Earth attracts the apple which is falling at each time of motion. Then according to Newton’s third law of motion, the apple exerts equal force on the Earth.
Conclusion:
Therefore, the apple which is free fall exerts a force on the Earth in which magnitude is equal to the force at which Earth exerts on apple.
Want to see more full solutions like this?
Chapter 6 Solutions
Physics for Scientists and Engineers with Modern Physics
Additional Science Textbook Solutions
Brock Biology of Microorganisms (15th Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Cosmic Perspective Fundamentals
Human Biology: Concepts and Current Issues (8th Edition)
Microbiology with Diseases by Body System (5th Edition)
- A golf tee is located at precisely ; = 46.5° north latitude, as shown in the figure below. The hole that the golfer is aiming for is directly south of the tee, a distance of 370 m. The golfer hits the ball from this tee with an initial velocity that is 48.0° above the horizontal, and the horizontal component of the ball's initial velocity is directly south. The horizontal range that the golf ball travels in flight is also 370 m, but the golfer is surprised to find that the golf ball does not land in the hole. We will assume that air resistance is negligible for the golf ball. The questions below analyze how the Earth's rotation affects the golf ball's apparent trajectory. North Pole Radius of circular path of tee RECOS ; RE Tee Golf ball trajectory -Hole Equator (a) For what length of time is the ball in flight (in s)? S (b) From the point of view of the golf tee, the ball's horizontal velocity is directed south. However, the golf tee, and therefore the golf ball, are moving east due…arrow_forwardOne end of a cord is fixed and a small 0.450-kg object is attached to the other end, where it swings in a section of a vertical circle of radius 3.00 m as shown in the figure below. When 0 = 23.0°, the speed of the object is 7.00 m/s. At this instant, find each of the following i (a) the tension in the cord T = × Your response differs from the correct answer by more than 10%. Double check your calculations. N (b) the tangential and radial components of acceleration a₁ = Your response differs from the correct answer by more than 10%. Double check your calculations. m/s² inward a₁ = m/s² downward tangent to the circle (c) the total acceleration a total = × Your response differs from the correct answer by more than 10%. Double check your calculations. m/s² inward and below the cord at Your response differs from the correct answer by more than 100%.° (d) Is your answer changed if the object is swinging down toward its lowest point instead of swinging up? ○ Yes No ×arrow_forwardOne of the more challenging elements in pairs figure skating competition is the "death spiral" (see the figure below), in which the female figure skater, balanced on one skate, is spun in a circle by the male skater. The axis of rotation of the pair is vertical and through the toe of the skate on the male skater's leg that is bent backward, the toe being planted into the ice. During the one-armed maneuver first developed in the 1940s, the outstretched arm of the male skater must apply a large force to support a significant fraction of the female skater's weight and also to provide her centripetal acceleration. This force represents a danger to the structure of the wrist of the male skater. (a) Modeling the female skater, of mass 47.0 kg, as a particle, and assuming that the combined length of the two outstretched arms is 129 cm and that arms make an angle of 45.0° with the horizontal, what is the magnitude of the force (in N) exerted by the male skater's wrist if each turn is completed…arrow_forward
- 8.30 Asteroid Collision. Two asteroids of equal mass in the aster- oid belt between Mars and Jupiter collide with a glancing blow. Asteroid A, which was initially traveling at 40.0 m/s, is deflected 30.0° from its original direction, while asteroid B, which was initially at rest, travels at 45.0° to the original direction of A (Fig. E8.30). (a) Find the speed of each asteroid after the collision. (b) What fraction of the original kinetic energy of asteroid A dissipates during this collision? Figure E8.30 A A 40.0 m/s 30.0° B T- 45.0°arrow_forwardPlease draw a sketch and a FBDarrow_forwardPlease draw a sketch and a FBDarrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





