
Alex and John are loading identical cabinets onto a truck. Alex lifts his cabinet straight up from the ground to the bed of the truck, whereas John slides his cabinet up a rough ramp to the truck. Which statement is correct about the work done on the cabinet–Earth system? (a) Alex and John do the same amount of work. (b) Alex does more work than John. (c) John does more work than Alex. (d) None of those statements is necessarily true because the

The correct statement about work done on the cabinet earth system.
Answer to Problem 1OQ
Option (c).
Explanation of Solution
Considering the cabinet has negligible speed during the operation. Of all the work A does increases the gravitational potential energy of the cabinet earth system.
In additional to increasing the gravitational potential energy of the cabinet earth system by the same amount as A did, john does an extra work in overcoming the friction between the cabinet and the ramp.
Therefore, total work done by the john is more than A.
Conclusion:
Since the total work done by the john is greater than that of A, option (c) is correct.
The total work done by the john is greater than that of A. Thus, option (a) is incorrect.
The total work done by the john is greater than that of A. Thus, option (b) is incorrect.
The total work done by the john is greater than that of A. Thus, option (d) is incorrect.
The total work done by the john is greater than that of A. Thus, option (e) is incorrect.
The total work done by the john is greater than that of alex. Thus, option (E) is incorrect.
Want to see more full solutions like this?
Chapter 6 Solutions
Principles of Physics: A Calculus-Based Text
- A 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forwardThree moles of an ideal gas undergo a reversible isothermal compression at 20.0° C. During this compression, 1900 J of work is done on the gas. For related problem-solving tips and strategies, you may want to view a Video Tutor Solution of Entropy change in a free expansion. Part A What is the change of entropy of the gas? ΤΕ ΑΣΦ AS = Submit Request Answer J/Karrow_forward
- 5.97 Block A, with weight 3w, slides down an inclined plane S of slope angle 36.9° at a constant speed while plank B, with weight w, rests on top of A. The plank is attached by a cord to the wall (Fig. P5.97). (a) Draw a diagram of all the forces acting on block A. (b) If the coefficient of kinetic friction is the same between A and B and between S and A, determine its value. Figure P5.97 B A S 36.9°arrow_forwardPlease take your time and solve each part correctly please. Thank you!!arrow_forwardhelp me answer this with explanations! thanks so mucharrow_forward
- No chatgpt pls will upvote Alreadyarrow_forwardWhat fuel economy should be expected from a gasoline powered car that encounters a total of 443N of resistive forces while driving down the road? (Those forces are from air drag, rolling resistance and bearing losses.) Assume a 30% thermodynamic efficiency.arrow_forwardNo chatgpt pls will upvotearrow_forward
- 12. What is the angle between two unit vectors if their dot product is 0.5?arrow_forwardIf the car in the previous problem increases its power output by 10% (by pressing the gas pedal farther down), at what rate will the car accelerate? Hint: Consider the net force. In the previous problem the power was 31.8kWarrow_forwardWhat power is required (at the wheels) for a 1400 kg automobile to climb a 4% grade at a constant speed 30 m/s while it is opposed by drag and rolling resistance forces totaling 500 N?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





