Write a program that will record the votes for one of two candidates by using the class VoteRecorder, which you will design and create. Vote Recorder will have static variables to keep track of the total votes for candidates and instance variables to keep track of the votes made by a single person. It will have the following attributes.
- nameCandidatePresident11—a static String that holds the name of the first candidate for president
- nameCandidatePresident2—a static string that holds the name of the second candidate for president
- nameCandidateVicePresident1 —a static string that holds the name of the first candidate for Vice president
- nameCandidateVicePresident2—a static string that holds the name of the second candidate for Vice president
- votesCondidatePresident1—a static integer that holds the number of votes for the first candidate for president
- votesCandidatePresident2—a static integer that holds the number of voles for the second candidate for president
- votesCandidateVicePresident1—a static integer that holds the number of votes for the first candidate for Vice president
- votesCandidateVicePresident2—a static integer that holds the number of rates for the second candidate for Vice president
- myVoteForPresident—an integer that holds the vote of a single individual for president (0 for no choice, 1 for the first candidate, and 2 for the second candidate)
- myVoteForVicePresident—an integer that holds the vote of a single individual for vice president (0 for no choice, 1 for the first candidate, and 2 for the second candidate)
In addition to appropriate constructors, VotRecorder has the following methods:
- setCandidaterPresident(String name1, String name2)—a static method that sets the names of the names of the two candidates for president
- getCandicateoVicePresident (String name1, string name2)—a static method that sets the names of the two candidates for vice president
- resetVotes—a static method that resets the vote counts to zero
- getCurrentVotePresident—a static method that returns a string with a current total number of votes for both presidential candidates
- getAndConfirmVotes—a non-static method that gets an individual’s votes, confirms then, and then records them
- getAVote(String name1, string name2)—a private method that returns a vote choice for a single race from a individual (0 for no choice, 1 for the first candidate, and 2 for the second candidate)
- getVotes—a private method that returns a vote choice for president and vice president from an individual
- confirmVotes—a private method that displays a person’s vote for president and vice president, asks whether the voter is happy with these choices, and returns true or false according to a yes-or-no response
- recordVotes—a private method that will add an individual’s votes to the appropriate static variables
Create a program that will candidates an election. The candidates for president are Annie and Bob. The candidates for vice president are John and Susan. Use a loop to record the votes of many voters. Create a new Vote Recorder object for each voter. After all the voters are done, present the results.
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Java: An Introduction to Problem Solving and Programming (8th Edition)
Additional Engineering Textbook Solutions
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Mechanics of Materials (10th Edition)
Starting Out with Programming Logic and Design (5th Edition) (What's New in Computer Science)
Modern Database Management
SURVEY OF OPERATING SYSTEMS
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
- You are asked to explain what a computer virus is and if it can affect computer’shardware or software. How do you protect your computer against virus? give one reference with your answer.arrow_forwardDistributed Systems: Consistency Models fer to page 45 for problems on data consistency. structions: Compare different consistency models (e.g., strong, eventual, causal) for distributed databases. Evaluate the trade-offs between availability and consistency in a given use case. Propose the most appropriate model for the scenario and explain your reasoning. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardOperating Systems: Deadlock Detection fer to page 25 for problems on deadlock concepts. structions: • Given a system resource allocation graph, determine if a deadlock exists. If a deadlock exists, identify the processes and resources involved. Suggest strategies to prevent or resolve the deadlock and explain their trade-offs. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Artificial Intelligence: Heuristic Evaluation fer to page 55 for problems on Al search algorithms. tructions: Given a search problem, propose and evaluate a heuristic function. Compare its performance to other heuristics based on search cost and solution quality. Justify why the chosen heuristic is admissible and/or consistent. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 75 for graph-related problems. Instructions: • Implement a greedy graph coloring algorithm for the given graph. • Demonstrate the steps to assign colors while minimizing the chromatic number. • Analyze the time complexity and limitations of the approach. Link [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 150 for problems on socket programming. Instructions: • Develop a client-server application using sockets to exchange messages. • Implement both TCP and UDP communication and highlight their differences. • Test the program under different network conditions and analyze results. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- Refer to page 80 for problems on white-box testing. Instructions: • Perform control flow testing for the given program, drawing the control flow graph (CFG). • Design test cases to achieve statement, branch, and path coverage. • Justify the adequacy of your test cases using the CFG. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 10 for problems on parsing. Instructions: • Design a top-down parser for the given grammar (e.g., recursive descent or LL(1)). • Compute the FIRST and FOLLOW sets and construct the parsing table if applicable. • Parse a sample input string and explain the derivation step-by-step. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 20 for problems related to finite automata. Instructions: • Design a deterministic finite automaton (DFA) or nondeterministic finite automaton (NFA) for the given language. • Minimize the DFA and show all steps, including state merging. • Verify that the automaton accepts the correct language by testing with sample strings. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- Refer to page 60 for solving the Knapsack problem using dynamic programming. Instructions: • Implement the dynamic programming approach for the 0/1 Knapsack problem. Clearly define the recurrence relation and show the construction of the DP table. Verify your solution by tracing the selected items for a given weight limit. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 70 for problems related to process synchronization. Instructions: • • Solve a synchronization problem using semaphores or monitors (e.g., Producer-Consumer, Readers-Writers). Write pseudocode for the solution and explain the critical section management. • Ensure the solution avoids deadlock and starvation. Test with an example scenario. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward15 points Save ARS Consider the following scenario in which host 10.0.0.1 is communicating with an external SMTP mail server at IP address 128.119.40.186. NAT translation table WAN side addr LAN side addr (c), 5051 (d), 3031 S: (e),5051 SMTP B D (f.(g) 10.0.0.4 server 138.76.29.7 128.119.40.186 (a) is the source IP address at A, and its value. S: (a),3031 D: (b), 25 10.0.0.1 A 10.0.0.2. 1. 138.76.29.7 10.0.0.3arrow_forward
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781337671385Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:CengageC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTMicrosoft Visual C#Computer ScienceISBN:9781337102100Author:Joyce, Farrell.Publisher:Cengage Learning,