Connect 1-Semester Online Access for Principles of General, Organic & Biochemistry
2nd Edition
ISBN: 9780077633707
Author: Janice Smith
Publisher: Mcgraw-hill Higher Education (us)
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.9, Problem 5.36P
Interpretation Introduction
Interpretation:
The chemically balanced equation for the reaction in which Nitrogen di oxide is converted to nitrogen and oxygen has to be given.
Concept Introduction:
A balanced chemical equation occurs when the number of atoms involved in the reactants side is equal to the number of atoms in the product side.
The steps to balance an equation:
- Count the number of atoms in an each element in the reactants and the products.
- Use the coefficient and place them in front of the compounds as needed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Reaction 5: In the final crystallization step, the aluminum sulfate from the previous step reacts
with potassium sulfate and water still present in the solution from other reactions to produce the
final alum product (KA(SO4)2-12H2O). Write a balanced chemical equation for the reaction and
compute the theoretical yield of the final alum product.
Theoretical Yield
Actual Yield
% Yield
The Solvay process for the manufacture of sodium carbonate begins by passing ammonia and carbon dioxide through a solution of sodium chloride to make sodium bicarbonate and ammonium chloride. The equation for this reaction is
H2O + NaCl + NH3 + CO2 → NH4Cl + NaHCO3
In the next step, sodium bicarbonate is heated to give sodium carbonate and two gases, carbon dioxide and steam.
2NaHCO3 → Na2CO3 + CO2 + H2O
What is the theoretical yield of sodium carbonate, expressed in grams, if 128 g of NaCl were used in the first reaction?
If 84.4 g of Na2CO3 was obtained, what was the percentage yield?
The reaction of ethanol with oxygen to yield carbon dioxide and water. (This is the reaction in a flambéed dessert or when an alcoholic beverage is ignited.)
C2H6O + O2 → CO2 + H2O
Chapter 5 Solutions
Connect 1-Semester Online Access for Principles of General, Organic & Biochemistry
Ch. 5.1 - Use the molecular art to identify the process as a...Ch. 5.1 - Use the molecular at to identify the process as a...Ch. 5.1 - Prob. 5.3PCh. 5.1 - Prob. 5.4PCh. 5.1 - Write a chemical equation from the following...Ch. 5.2 - Prob. 5.6PCh. 5.2 - Prob. 5.7PCh. 5.2 - Prob. 5.8PCh. 5.2 - Prob. 5.9PCh. 5.2 - Prob. 5.10P
Ch. 5.3 - Prob. 5.11PCh. 5.3 - Prob. 5.12PCh. 5.3 - How many molecules are contained in each of the...Ch. 5.3 - Prob. 5.14PCh. 5.4 - Prob. 5.15PCh. 5.4 - Prob. 5.16PCh. 5.4 - Prob. 5.18PCh. 5.4 - Prob. 5.19PCh. 5.5 - Use the balanced equation for the reaction of N2...Ch. 5.5 - Prob. 5.21PCh. 5.6 - Using the balanced equation for fermentation...Ch. 5.6 - Prob. 5.23PCh. 5.6 - Prob. 5.24PCh. 5.6 - Prob. 5.25PCh. 5.7 - Prob. 5.26PCh. 5.7 - Prob. 5.27PCh. 5.7 - Prob. 5.28PCh. 5.7 - Early pacemakers generated an electrical impulse...Ch. 5.8 - Prob. 5.30PCh. 5.8 - Prob. 5.31PCh. 5.8 - Prob. 5.32PCh. 5.8 - Prob. 5.33PCh. 5.9 - Prob. 5.34PCh. 5.9 - Prob. 5.35PCh. 5.9 - Prob. 5.36PCh. 5.10 - Prob. 5.37PCh. 5.10 - In which direction is the equilibrium shifted with...Ch. 5 - Use the molecular art to identify the process as a...Ch. 5 - Prob. 5.40UKCCh. 5 - Prob. 5.41UKCCh. 5 - Prob. 5.42UKCCh. 5 - Prob. 5.43UKCCh. 5 - Prob. 5.44UKCCh. 5 - Prob. 5.45UKCCh. 5 - Spinach, cabbage, and broccoli are excellent...Ch. 5 - Prob. 5.47UKCCh. 5 - Prob. 5.48UKCCh. 5 - Prob. 5.49UKCCh. 5 - Rechargeable nickelcadmium batteries are used in...Ch. 5 - Prob. 5.51UKCCh. 5 - Prob. 5.52UKCCh. 5 - Prob. 5.53UKCCh. 5 - Prob. 5.54UKCCh. 5 - Prob. 5.55APCh. 5 - Prob. 5.56APCh. 5 - Prob. 5.57APCh. 5 - Prob. 5.58APCh. 5 - Prob. 5.59APCh. 5 - Prob. 5.60APCh. 5 - Prob. 5.61APCh. 5 - Prob. 5.62APCh. 5 - Prob. 5.63APCh. 5 - Consider the reaction, 2 NO + 2 CO N2 + 2 CO2....Ch. 5 - Prob. 5.65APCh. 5 - Prob. 5.66APCh. 5 - Prob. 5.67APCh. 5 - Prob. 5.68APCh. 5 - Prob. 5.69APCh. 5 - Prob. 5.70APCh. 5 - Prob. 5.71APCh. 5 - Prob. 5.72APCh. 5 - Prob. 5.73APCh. 5 - Prob. 5.74APCh. 5 - Prob. 5.75APCh. 5 - Prob. 5.76APCh. 5 - Prob. 5.77APCh. 5 - Prob. 5.78APCh. 5 - Prob. 5.79APCh. 5 - Prob. 5.80APCh. 5 - Prob. 5.81APCh. 5 - Prob. 5.82APCh. 5 - Prob. 5.83APCh. 5 - Prob. 5.84APCh. 5 - Prob. 5.85APCh. 5 - Prob. 5.86APCh. 5 - Prob. 5.87APCh. 5 - Prob. 5.88APCh. 5 - Prob. 5.89APCh. 5 - Prob. 5.90APCh. 5 - Prob. 5.91APCh. 5 - Prob. 5.92APCh. 5 - Prob. 5.93APCh. 5 - Prob. 5.94APCh. 5 - Prob. 5.95APCh. 5 - Prob. 5.96APCh. 5 - Prob. 5.97APCh. 5 - Prob. 5.98APCh. 5 - Prob. 5.99APCh. 5 - Prob. 5.100APCh. 5 - Prob. 5.101APCh. 5 - Prob. 5.102APCh. 5 - Prob. 5.103CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Ethanol, C2H5OH, is a gasoline additive that can be produced by fermentation of glucose. C6H12O62C2H5OH+2CO2 (a) Calculate the mass (g) of ethanol produced by the fermentation of 1.000 lb glucose. (b) Gasohol is a mixture of 10.00 mL ethanol per 90.00 mL gasoline. Calculate the mass (in g) of glucose required to produce the ethanol in 1.00 gal gasohol. Density of ethanol = 0.785 g/mL. (c) By 2022, the U. S. Energy Independence and Security Act calls for annual production of 3.6 1010 gal of ethanol, no more than 40% of it produced by fermentation of corn. Fermentation of 1 ton (2.2 103 lb) of corn yields approximately 106 gal of ethanol. The average corn yield in the United States is about 2.1 105 lb per 1.0 105 m2. Calculate the acreage (in m2) required to raise corn solely for ethanol production in 2022 in the United States.arrow_forward4.1 List at least two factors that make it difficult to describe the combustion of gasoline accurately. What assumption can be made to address these complications?arrow_forwardThe carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forward
- 4.3 Explain the difference between complete and incomplete combustion.arrow_forward4.60 Why are fuel additives used?arrow_forwardWhat is Hrxn for reaction of iron(III) oxide and carbon monoxide to give iron metal and carbon dioxide gas? Use the following reactions: 4Fe(s)+3O2(g)2Fe2O3(s)H=1648.4kJ4CO(g)+O2(g)2CO3(g)H=565.98kJarrow_forward
- Butane C4H10 burns with Oxygen to produce CO2 and H2O. Write out the chemical equation for this reaction, and show how it balances.arrow_forwardFor the steam hydrocarbon reforming process, the equilibrium law expression is [CO₂(g)][H₂(g)]* [CH][H₂0² Kc The reaction described by this equilibrium is CH4 (a) + H₂O(g) = CO₂(g) + H₂(g) CH4 (q) + 2H₂O(g) = CO₂(g) + 4H₂(g) CO₂(g) + 4H₂(g) = CH₁ (a) +2H₂O(g) CO₂(g) + H₂ (a) CH4 (q) + H₂O(g)arrow_forwardWhat is the classification of the following reaction: C3H8 + 5 O2 --> 3 CO2 + 4 H2O Combustion Combination Decomposition Single Replacementarrow_forward
- Either sulfuric acid or bismuth(III) nitrate pentahydrate can catalyze this reaction. What is an advantage to using sulfuric acid? What is an advantage of using the bismuth compound?arrow_forwardThe titanium chloride then reacts with liquid magnesium at 900°C to givetitanium and magnesium chloride (MgCl2). Write a balanced chemicalequation for this step in the refining of titanium.arrow_forwardPredicting the products of a combustion reactionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Living By Chemistry: First Edition Textbook
Chemistry
ISBN:9781559539418
Author:Angelica Stacy
Publisher:MAC HIGHER
Seven Name Reactions in One - Palladium Catalysed Reaction (047 - 053); Author: Rasayan Academy - Jagriti Sharma;https://www.youtube.com/watch?v=5HEKTpDFkqI;License: Standard YouTube License, CC-BY