(a)
Interpretation:
The forward and reverse reaction in the given equilibrium reaction has to be calculated.
Concept introduction:
A reversible reaction can occur in either direction from reactants to products or form products to reactants. The forward reaction proceeds from left to right as drawn. The reverse reaction proceeds from right to left as drawn.
Example:
The forward reaction is,
The reverse reaction is,
(b)
Interpretation:
The forward and reverse reaction in the given equilibrium reaction has to be calculated.
Concept introduction:
Refer to part (a).
(c)
Interpretation:
The forward and reverse reaction in the given equilibrium reaction has to be calculated.
Concept introduction:
Refer to part (a).
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Connect 1-Semester Online Access for Principles of General, Organic & Biochemistry
- Consider the system 4 NH3(g) + 3 O2(g) ⇌ 2 N2(g) + 6 H20(ℓ) ΔrH° = −1530.4 kJ/mol How will the amount of ammonia at equilibrium be affected by removing O2(g) without changing the total gas volume? adding N2(g) without changing the total gas volume? adding water without changing the total gas volume? expanding the container? increasing the temperature? Which of these changes (i to v) increases the value of K? Which decreases it?arrow_forward1. A process is spontaneous in the direction that moves it away from equilibrium toward equilibriumarrow_forwardWhen writing an equation, how is a reversible reaction distinguished from a nonreversible reaction?arrow_forward
- . Consider an equilibrium mixture consisting of H2O(g), CO(g). H2(g), and CO2(g) reacting in a closed vessel according to the equation H2O(g)+CO(g)H2(g)+CO2(g)a. You add more H2O to the flask. How does the new equilibrium concentration of each chemical compare to its origin al equilibrium concentration after equilibrium is re-established? Justify your answer. b. You add more H2to the flask. How does the concentration of each chemical compare to its original concentration after equilibrium is re-established? Justify your answer.arrow_forward. Consider the reaction 2CO(g)+O2(g)2CO2(g)Suppose the system is already at equilibrium, and then an additional mole of CO2(g) is injected into the system at constant temperature. Does the amount of O2(g) in the system increase or decrease? Does the value of K for the reaction change?arrow_forwardHeating a metal carbonate leads to decomposition. BaCO3(s) BaO(s) + CO2(g) Predict the effect on the equilibrium of each change listed below. Answer by choosing (i) no change, (ii) shifts left or (iii) shifts right. (a) add BaCO3 (b) add CO2 (c) add BaO (d) raise the temperature (e) increase the volume of the flask containing the reactionarrow_forward
- What is Le Chteliers principle? Consider the reaction 2NOCI(g)2NO(g)+Cl2(g) If this reaction is at equilibrium. what happens when the following changes occur? a. NOCI(g) is added. b. NO(g) is added. c. NOCI(g) is removed. d. Cl2(g) is removed. e. The container volume is decreased. For each of these changes, what happens to the value of K for the reaction as equilibrium is reached again? Give an example of a reaction for which the addition or removal of one of the reactants or products has no effect on the equilibrium position. In general, how will the equilibrium position of a gas-phase reaction be affected if the volume of the reaction vessel changes? Are there reactions that will not have their equilibria shifted by a change in volume? Explain. Why does changing the pressure in a rigid container by adding an inert gas not shift the equilibrium position for a gas-phase reaction?arrow_forward. Calcium sulfate, CaSO4, is only soluble in water to the extent of approximately 2.05 g/L at 25 °C. Calculate Kspfor calcium sulfate at 25°C.arrow_forwardA gaseous material XY(g) dissociates to some extent to produce X(g) and Y(g): XY(g)X(g)+Y(g) A 2.00-g sample of XY (molar mass = 165 g/mol) is placed in a container with a movable piston at 25C. The pressure is held constant at 0.967 atm. As XY begins to dissociate, the piston moves until 35.0 mole percent of the original XY has dissociated and then remains at a constant position. Assuming ideal behavior, calculate the density of the gas in the container after the piston has stopped moving, and determine the value of K for this reaction of 25C.arrow_forward
- Kp for the following reaction is 0.16 at 25 C: 2 NOBr(g) 2 NO(g) + Br2(g) The enthalpy change for the reaction at standard conditions is + 16.3 kJ/mol-rxn. Predict the effect of the following changes on the position of the equilibrium; that is, state which way the equilibrium will shift (left, right, or no change) when each of the following changes is made. (a) adding more Br2(g) (b) removing some NOBr(g) (c) decreasing the temperature (d) increasing the container volumearrow_forwardConsider the reaction N2O4(g)2NO2(g). Draw a graph illustrating the changes of concentrations of N2O4 and NO2 as equilibrium is approached. Describe how the rates of the forward and reverse reactions change as the mixture approaches dynamic equilibrium. Why is this called a dynamic equilibrium?arrow_forwardExplain why an equilibrium between Br2(l) and Br2(g) would not be established if the container were not a closed vessel shown in Figure 13.5.arrow_forward
- Chemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning