Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
5th Edition
ISBN: 9781323132098
Author: Thomas, Lay
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.6, Problem 7E
Let A have the properties described in Exercise 1.
- a. Is the origin an attractor, a repeller, or a saddle point of the dynamical system xk+1 = Axk?
- b. Find the directions of greatest attraction and/or repulsion for this dynamical system.
- c. Make a graphical description of the system, showing the directions of greatest attraction or repulsion. Include a rough sketch of several typical trajectories (without computing specific points).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Classify the origin as an attractor, repeller, or saddle point of the dynamical system XK+1=Axk. Find the directions of
greatest attraction and/or repulsion.
A =
0.6 0.6
-0.8 2.0
Classify the origin as an attractor, repeller, or saddle point. Choose the correct answer below.
O A. The origin is a saddle point.
O B. The origin is an attractor.
O C. The origin is a repeller.
Classify the origin as an attractor, repeller, or saddle point of the dynamical system XK + 1 = Axk. Find the directions of
greatest attraction and/or repulsion.
A =
1.1 -0.4
- 1.2 0.9
Classify the origin as an attractor, repeller, or saddle point. Choose the correct answer below.
O A. The origin is an attractor.
O B. The origin is a saddle point.
O C. The origin is a repeller.
Classify the origin as an attractor, repeller, or saddle point of the dynamical system xg + 1 = Axg. Find the directions of greatest attraction and/or repulsion.
0.8 1.2
A=
- 0.2 1.8
Classify the origin as an attractor, repeller, or saddle point. Choose the correct answer below.
O A. The origin is an attractor.
B. The origin is a repeller.
OC. The origin is a saddle point.
Find the direction of greatest attraction if it applies. Choose the correct answer below.
2
O A. The direction of greatest attraction is along the line through 0 and
14
B. The direction of greatest attraction is along the line through 0 and
12
12
O. The direction of greatest attraction is along the line through 0 and
14
O D. The direction of greatest attraction is along the line through 0 and
1
O E. The origin is a repeller. It has no direction of greatest attraction.
Find the direction of greatest repulsion if it applies. Choose the correct answer below.
3
O A. The direction of greatest repulsion is along the line…
Chapter 5 Solutions
Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
Ch. 5.1 - Is 5 an eigenvalue of A=[631305226]?Ch. 5.1 - If x is an eigenvector of A corresponding to ,...Ch. 5.1 - Suppose that b1 and b2 are eigenvectors...Ch. 5.1 - If A is an n n matrix and is an eigenvalue of A,...Ch. 5.1 - Is = 2 an eigenvalue of [3238]? Why or why not?Ch. 5.1 - Is = 2 an eigenvalue of [7331]? Why or why not?Ch. 5.1 - Is [14] an eigenvalue of [3138]? If so, find the...Ch. 5.1 - Is [1+21] an eigenvector of [2114]?If so, find the...Ch. 5.1 - Is [431] an eigenvalue of [379451244]? If so, find...Ch. 5.1 - Is [121] an eigenvalue of [367337565]? If so, find...
Ch. 5.1 - Is = 4 an eigenvalue of [301231345]? If so, find...Ch. 5.1 - Is = 3 an eigenvalue of [122321011]? If so, find...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - In Exercises 9-16, find a basis for the eigenspace...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - Find the eigenvalues of the matrices in Exercises...Ch. 5.1 - For A=[123123123], find one eigenvalue, with no...Ch. 5.1 - Without calculation, find one eigenvalue and two...Ch. 5.1 - a. If Ax = x for some vector x. then is an...Ch. 5.1 - a. If Ax = x for some scalar . then x is an...Ch. 5.1 - Explain why a 2 2 matrix can have at most two...Ch. 5.1 - Construct an example of a 2 2 matrix with only...Ch. 5.1 - Let be an eigenvalue of an invertible matrix A....Ch. 5.1 - Show that if A2 is the zero matrix, then the only...Ch. 5.1 - Show that is an eigenvalue of A if and only if ...Ch. 5.1 - Use Exercise 27 to complete the proof of Theorem 1...Ch. 5.1 - Consider an n n matrix A with the property that...Ch. 5.1 - Consider an n n matrix A with the property that...Ch. 5.1 - In Exercises 31 and 32, let A be the matrix of the...Ch. 5.1 - T is the transformation on 3 that rotates points...Ch. 5.1 - Let u and v be eigenvectors of a matrix A, with...Ch. 5.1 - Describe how you might try to build a solution of...Ch. 5.1 - Let u and v be the vectors shown in the figure,...Ch. 5.1 - Repeat Exercise 35, assuming u and v are...Ch. 5.2 - Find the characteristic equation and eigenvalues...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Find the characteristic polynomial and the...Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - Exercises 914 require techniques from Section 3.1....Ch. 5.2 - For the matrices in Exercises 1517, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - For the matrices in Exercises 15-17, list the...Ch. 5.2 - It can be shown that the algebraic multiplicity of...Ch. 5.2 - Let A be an n n matrix, and suppose A has n real...Ch. 5.2 - Use a property of determinants to show that A and...Ch. 5.2 - a. The determinant of A is the product of the...Ch. 5.2 - a. If A is 3 3, with columns a1, a2, and a3, then...Ch. 5.2 - A widely used method for estimating eigenvalues of...Ch. 5.2 - Show that if A and B are similar, then det A = det...Ch. 5.2 - Let A = [.6.3.4.7], v1 = [3/74/7], x0 = [.5.5]....Ch. 5.2 - Let A = [abcd]. Use formula (1) for a determinant...Ch. 5.2 - Let A = [.5.2.3.3.8.3.20.4], v1 = [.3.6.1], v2 =...Ch. 5.3 - Compute A8, where A = [4321].Ch. 5.3 - Let A = [31227], v1 = [31], and v2 = [21]. Suppose...Ch. 5.3 - Let A be a 4 4 matrix with eigenvalues 5, 3, and...Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 1 and 2, let A = PDP1 and compute A4....Ch. 5.3 - In Exercises 3 and 4, use the factorization A =...Ch. 5.3 - In Exercises 3 and 4, use the factorization A =...Ch. 5.3 - In Exercises 5 and 6. the matrix A is factored in...Ch. 5.3 - In Exercises 5 and 6. the matrix A is factored in...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - Diagonalize the matrices in Exercises 720, if...Ch. 5.3 - In Exercises 21 and 22, A, B, P, and D are n n...Ch. 5.3 - In Exercises 21 and 22, A, B, P, and D are n n...Ch. 5.3 - A is a 5 5 matrix with two eigenvalues. One...Ch. 5.3 - A is a 3 3 matrix with two eigenvalues. Each...Ch. 5.3 - A is a 4 4 matrix with three eigenvalues. One...Ch. 5.3 - A is a 7 7 matrix with three eigenvalues. One...Ch. 5.3 - Show that if A is both diagonalizable and...Ch. 5.3 - Show that if A has n linearly independent...Ch. 5.3 - A factorization A = PDP1 is not unique....Ch. 5.3 - With A and D as in Example 2, find an invertible...Ch. 5.3 - Construct a nonzero 2 2 matrix that is invertible...Ch. 5.3 - Construct a nondiagonal 2 2 matrix that is...Ch. 5.4 - Find T(a0 + a1t + a1t2), if T is the linear...Ch. 5.4 - Let A, B, and C be n n matrices. The text has...Ch. 5.4 - Let B = b1,b2,b3 and D = d1,d2 be bases for vector...Ch. 5.4 - Let D = {d1, d2} and B = {b1, b2} be bases for...Ch. 5.4 - Let = e1,e2,e3 be the standard basis for 3, B =...Ch. 5.4 - Let B = b1,b2,b3 be a basis for a vector space V...Ch. 5.4 - Let T : 2 3 be the transformation that maps a...Ch. 5.4 - Let T : 2 4 be the transformation that maps a...Ch. 5.4 - Assume the mapping T : 2 2 defined by T(a0 + a1t...Ch. 5.4 - Let B = {b1, b2, b3} be a basis for a vector space...Ch. 5.4 - Define T :2 3 = by T (p) = [p(-1)p(0)p(1)]. a....Ch. 5.4 - Define T : 3 4 by T(p) = [p(-3)p(-1)p(1)p(3)]. a....Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 11 and 12, find the B-matrix for the...Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - In Exercises 1316, define T : 2 2 by T(x) = Ax....Ch. 5.4 - Let A = [1113] and B = {b1, b2}, for b1 = [11], b2...Ch. 5.4 - Define T : 3 3 by T (x) = Ax, where A is a 3 3...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - Verify the statements in Exercises 1924. The...Ch. 5.4 - The trace of a square matrix A is the sum of the...Ch. 5.4 - It can be shown that the trace of a matrix A...Ch. 5.4 - Let V be n with a basis B = {b1 ,, bn}; let W be n...Ch. 5.4 - Let V be a vector space with a basis B = {b1, ,...Ch. 5.4 - Let V be a vector space with a basis B = {b1, ...Ch. 5.4 - [M] In Exercises 30 and 31, find the B-matrix for...Ch. 5.4 - [M] In Exercises 30 and 31, find the B-matrix for...Ch. 5.5 - Show that if a and b are real, then the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - Let each matrix in Exercises 16 act on 2. Find the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 712, use Example 6 to list the...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Exercises 1320, find an invertible matrix P and...Ch. 5.5 - In Example 2, solve the first equation in (2) for...Ch. 5.5 - Let A be a complex (or real) n n matrix, and let...Ch. 5.5 - Chapter 7 will focus on matrices A with the...Ch. 5.5 - Let A be an n n real matrix with the property...Ch. 5.5 - Let A be a real n n matrix, and let x be a vector...Ch. 5.5 - Let A be a real 2 2 matrix with a complex...Ch. 5.6 - The matrix A below has eigenvalues 1, 23, and 13,...Ch. 5.6 - What happens to the sequence {xk } in Practice...Ch. 5.6 - Let A be a 2 2 matrix with eigenvalues 3 and 1/3...Ch. 5.6 - Suppose the eigenvalues of a 3 3 matrix A are 3,...Ch. 5.6 - In Exercises 36, assume that any initial vector x0...Ch. 5.6 - Determine the evolution of the dynamical system in...Ch. 5.6 - In old-growth forests of Douglas fir, the spotted...Ch. 5.6 - Show that if the predation parameter p in Exercise...Ch. 5.6 - Let A have the properties described in Exercise 1....Ch. 5.6 - Prob. 8ECh. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - In Exercises 914, classify the origin as an...Ch. 5.6 - Let A = [.40.2.3.8.3.3.2.5]. The vector v1 = [163]...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i,...Ch. 5.7 - A real 3 3 matrix A has eigenvalues .5, .2 + .3i....Ch. 5.7 - A real 3 3 matrix A has eigenvalues 5, .2 + .3i,...Ch. 5.7 - A panicle moving in a planar force field has a...Ch. 5.7 - Let A be a 2 2 matrix with eigenvalues 3 and 1...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 36, solve the initial value problem...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 7 and 8, make a change of variable...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - In Exercises 918, construct the general solution...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 (as...Ch. 5.7 - [M] Find formulas for the voltages v1 and v2 for...Ch. 5.7 - [M] Find formulas for the current it and the...Ch. 5.7 - [M] The circuit in the figure is described by the...Ch. 5.8 - How can you tell if a given vector x is a good...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - In Exercises 14, the matrix A is followed by a...Ch. 5.8 - Let A = [15162021]. The vectors x, , A5x are...Ch. 5.8 - Let A = [2367]. Repeat Exercise 5, using the...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Exercises 13 and 14 apply to a 3 3 matrix A whose...Ch. 5.8 - Suppose Ax = x with x 0. Let or be a scalar...Ch. 5.8 - Suppose n is an eigenvalue of the B in Exercise...Ch. 5.8 - A common misconception is that if A has a strictly...Ch. 5 - Mark each statement as True or False. Justify each...Ch. 5 - Show that if x is an eigenvector of the matrix...Ch. 5 - Suppose x is an eigenvector of A corresponding to...Ch. 5 - Use mathematical induction to show that if is an...Ch. 5 - If p(t) = c0 + c1t + c2t2 + + cntn, define p(A)...Ch. 5 - Suppose A = PDP1, where P is 2 2 and D = [2007]....Ch. 5 - Suppose A is diagonalizable and p(t) is the...Ch. 5 - a. Let A be a diagonalizable n n matrix. Show...Ch. 5 - Show that I A is invertible when all the...Ch. 5 - Show that if A is diagonalizable, with all...Ch. 5 - Let u be an eigenvector of A corresponding to an...Ch. 5 - Let G = [AX0B] Use formula (1) for the determinant...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Use Exercise 12 to find the eigenvalues of the...Ch. 5 - Let J be the n n matrix of all 1s, and consider A...Ch. 5 - Apply the result of Exercise 15 to find the...Ch. 5 - Let A = [a11a12a21a22]. Recall from Exercise 25 in...Ch. 5 - Let A = [.4.3.41.2]. Explain why Ak approaches...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Use mathematical induction to prove that for n 2,...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...Ch. 5 - Exercises 1923 concern the polynomial p(t) = a0 +...
Additional Math Textbook Solutions
Find more solutions based on key concepts
Whether the statement “If v and w are vectors such that v=−3w, then v and w are parallel” is true or false.
Elementary Linear Algebra (Classic Version) (2nd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
In Exercises 14 the given matrix represents an augmented matrix for a linear system. Write the corresponding se...
Elementary Linear Algebra: Applications Version
The equation in function notation
Algebra 1
In each of Exercises 21–30, draw a linear graph to represent the given information. Be sure to label and number...
Elementary Algebra: Concepts and Applications (10th Edition)
Students in a Listening Responses class bought 40 tickets for a piano concert. The number of tickets purchased ...
Elementary and Intermediate Algebra
Silvia wants to mix a 40% apple juice drink with pure apple juice to make 2 L of a juice drink that is 80% appl...
Beginning and Intermediate Algebra
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Which of the following parameters in the model E(Y) =Bo+B1x1 +B2X2+B3X1X2 is an interaction parameter? а. Во b. B1 C. B2 d. Baarrow_forwardClassify the origin as an attractor, repeller, or saddle point of the dynamical system x + 1 = Axk. Find the directions of greatest attraction and/or repulsion. 1.8 - 0.8 A = - 1.2 0.8 .... . Classify the origin as an attractor, repeller, or saddle point. Choose the correct answer below. A. The origin is a saddle point. O B. The origin is an attractor. C. The origin is a repeller.arrow_forwardExercise 4.11.22 You are doing experiments and have obtained the ordered pairs, (0,1),(1,2), (2,3.5), (3,4) Find m and b such that y=mx+b approximates these four points as well as possible.arrow_forward
- Two chemical engineers, A and B, are working independently to develop a model to predict the viscosity of a product (y) from the pH (x1) and the concentration of a certain catalyst (x2). Each engineer has fit the linear model y =A +hr, + B;x; +r The engineers have sent you output summarizing their results: Engineer A Predictor Constant тР Coef SE Coef 199.2 0.5047 394.7 0.000 -1.569 pH Concent. -4.730 0.5857 -8.08 0.000 0.4558 -3.44 0.007 Engineer B Predictor Coef Constant 199.0 0.548 SE Coef T 363.1 0.000 pH Concent. -3.636 1.952 -1.256 1.983 -0.63 0.544 -1.86 0.112 The engineers have also sent you the following scatterplots of pH versus concentration, but forgot to put their names on them. Concentration Concentration Which plot came from which engineer? How do you know? Which engineer's experiment produced the more reliable results? Explain. a. b.arrow_forwardConsider a linear model to explain monthly beer consumption: beer = Bo + Biinc + Bzprice + Bzeduc + Bafemale + u E(ulinc, price, educ, female) = 0 Var(ulinc, price, educ, female) = o²inc². Write the transformed equation that has a homoskedastic error term.arrow_forward3. Check whether (2, 4) and (1, 2) are linearly dependent or not?arrow_forward
- Sketch level curves z = 9, 16, 21, and 24 for the functionz = 25 − x2 − y2. Include the graphs of three gradient vectors on each level curve. What do you observe?arrow_forward4. Solve the following initial value problem using Laplace transforms: y" + 3y' + 2y = g(t) with y(0) = 0 and y'(0) = -2 where %3D 2, t10.arrow_forward5_d. Please give step by step solution. Please do part d.arrow_forward
- Which of the following graphs shows interaction between X₁ and x2 in their effects on y? a) y x2=1 x2=0 x1 b) y x2=0 x2=1 x1 O b) O neither a) nor b) O a) and b) a) cannot be determined without also having the regression outputarrow_forwardDetermine whether the given function is a linear trans- formation in Exercises 1-12. 5. T: P + Pi by T (ax? + bx + c) = 2ax + b.arrow_forwardcan u solve g,h,iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY