Diagonalize the matrices in Exercises 7–20, if possible. The eigenvalues for Exercises 11–16 are as follows: (11) λ = 1, 2 3, (12) λ = 2, 8; (13) λ = 5, 1; (14) λ = 5, 4; (15) λ = 3, 1; (16) λ = 2, 1. For Exercise 18, one eigenvalue is λ = 5 and one eigenvector is (−2, 1, 2).
20.
Trending nowThis is a popular solution!
Chapter 5 Solutions
Thomas' Calculus and Linear Algebra and Its Applications Package for the Georgia Institute of Technology, 1/e
Additional Math Textbook Solutions
Elementary and Intermediate Algebra
Elementary Linear Algebra (Classic Version) (2nd Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Algebra and Trigonometry
Introduction to Linear Algebra (Classic Version) (5th Edition) (Pearson Modern Classics for Advanced Mathematics Series)
Intermediate Algebra (13th Edition)
- Consider again the matrix A in Exercise 35. Give conditions on a, b, c, and d such that A has two distinct real eigenvalues, one real eigenvalue, and no real eigenvalues.arrow_forwardShow that A=[0110] has no real eigenvalues.arrow_forwardFor what values of a does the matrix A=[01a1] have the characteristics below? a A has eigenvalue of multiplicity 2. b A has 1 and 2 as eigenvalues. c A has real eigenvalues.arrow_forward
- Find all values of the angle for which the matrix A=[cossinsincos] has real eigenvalues. Interpret your answer geometrically.arrow_forwarda Find a symmetric matrix B such that B2=A for A=[2112] b Generalize the result of part a by proving that if A is an nn symmetric matrix with positive eigenvalues, then there exists a symmetric matrix B such that B2=A.arrow_forwardIn general, it is difficult to show that two matrices are similar. However, if two similar matrices are diagonalizable, the task becomes easier. In Exercises 38-41, show that A and B are similar by showing that they are similar to the same diagonal matrix. Then find an invertible matrix P such that .arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning