Chemistry
3rd Edition
ISBN: 9780073402734
Author: Julia Burdge
Publisher: MCGRAW-HILL HIGHER EDUCATION
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5.4, Problem 2CP
Interpretation Introduction
Interpretation:
The given metals in order of increasing amount of heat absorbed in the process are to be arranged.
Concept introduction:
The specific heat of a material can be referred to as the quantity of heat used to raise the temperature by
The heat related with change in temperature of a material can be determined as:
Here, q represents heat, s signifies specific heat, m shows mass and,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1. How many grams of copper (II) oxide are needed to produce 693 kJ of energy?
3 CuO + 2 Al -> 3 Cu + Al2O3 △ H = 1190 kJ/mol
2. How much titanium in grams is required to release 126.81 kJ of heat?
Ti + 2 B -> TiB2 △ H = 316 kJ/mol
1. How many kJ of energy are released by 34.65 g of boron?
Ti + 2 B -> TiB2 △ H = 316 kJ/mol
2. How much energy in kJ is released when 14.17 g of aluminum react with an excess of copper oxide?
3 CuO + 2 Al -> 3 Cu + Al2O3 △ H = 1190 kJ/mol
3. If 36.26 grams of aluminum is heated from 18 oC to 26 oC how much energy was required?
sAl = 0.897 J/(gK)
The reaction between 0.476 g of magnesium and 200.
mL of 2 M HCI resulted in an increase of 7.3 °C in the
solution.
The density of the solution is 1.02 g/mL and the
specific heat capacity of the solution is 3.93 J/g°C.
Determine the amount of heat of the reaction DH
in kJ/mol Mg.
Chapter 5 Solutions
Chemistry
Ch. 5.1 - Practice Problem ATTEMPT
(a) Calculate the energy...Ch. 5.1 - Practice Problem BUILD
(a) Calculate the velocity...Ch. 5.1 - Prob. 1PPCCh. 5.1 - Prob. 1CPCh. 5.1 - How much greater is the electrostatic potential...Ch. 5.1 - Prob. 3CPCh. 5.1 - 5.1.4 The label on packaged food indicates that it...Ch. 5.1 - 5.1.5 Arrange the following pairs of charged...Ch. 5.1 - Prob. 6CPCh. 5.2 - Practice Problem ATTEMPT
Calculate the change in...
Ch. 5.2 - Practice ProblemBUILD Calculate the magnitude of q...Ch. 5.2 - Prob. 1PPCCh. 5.2 - Calculate the overall change in internal energy...Ch. 5.2 - Calculate w, and determine whether work is done by...Ch. 5.2 - Prob. 3CPCh. 5.2 - Prob. 4CPCh. 5.3 - Prob. 1PPACh. 5.3 - Prob. 1PPBCh. 5.3 - Prob. 1PPCCh. 5.3 - Given the thermochemical equation: H 2 ( g ) + Br...Ch. 5.3 - Given the thermochemical equation: 2Cu 2 O ( s ) →...Ch. 5.4 - Prob. 1PPACh. 5.4 - Prob. 1PPBCh. 5.4 - Prob. 1PPCCh. 5.4 - Prob. 1CPCh. 5.4 - Prob. 2CPCh. 5.4 - Prob. 3CPCh. 5.4 - 5.4.4 Quantities of 50.0 mL of 1.00 M HCl and 50.0...Ch. 5.5 - Prob. 1PPACh. 5.5 - Prob. 1PPBCh. 5.5 - Prob. 1PPCCh. 5.5 - Prob. 1CPCh. 5.5 - Prob. 2CPCh. 5.6 - Prob. 1PPACh. 5.6 - Prob. 1PPBCh. 5.6 - Prob. 1PPCCh. 5.6 - Prob. 1CPCh. 5.6 - Prob. 2CPCh. 5.6 - Prob. 3CPCh. 5.6 - Prob. 4CPCh. 5.7 - Prob. 1PPACh. 5.7 - Prob. 1PPBCh. 5.7 - Prob. 1PPCCh. 5.8 - Prob. 1PPACh. 5.8 - Prob. 1PPBCh. 5.8 - Practice ProblemCONCEPTUALIZE The diagrams...Ch. 5.9 - Practice ProblemATTEMPT Use the following data to...Ch. 5.9 - Prob. 1PPBCh. 5.9 - Prob. 1PPCCh. 5 - Using data from Appendix 2, calculate the standard...Ch. 5 - Prob. 2KSPCh. 5 - Prob. 3KSPCh. 5 - Using only whole-number coefficients, the...Ch. 5 - Prob. 1QPCh. 5 - Prob. 2QPCh. 5 - Prob. 3QPCh. 5 - 5.4 A truck initially trawling at 60 km/h is...Ch. 5 - These are various forms of energy: chemical, heat,...Ch. 5 - 5.6 Define these terms: thermochemistry,...Ch. 5 - 5.7 Stoichiometry is based on the law of...Ch. 5 - Prob. 8QPCh. 5 - Decomposition reactions are usually endothermic,...Ch. 5 - Prob. 10QPCh. 5 - Prob. 11QPCh. 5 - Prob. 12QPCh. 5 - Prob. 13QPCh. 5 - Prob. 14QPCh. 5 - Prob. 15QPCh. 5 - Prob. 16QPCh. 5 - Prob. 17QPCh. 5 - Use the following diagrams for Problems 5.17 and...Ch. 5 - Consider these changes. (a) Hg ( t ) → Hg ( g )...Ch. 5 - Prob. 20QPCh. 5 - Prob. 21QPCh. 5 - 5.22 Explain the meaning of this thermochemical...Ch. 5 - Consider this reaction: 2 CH 3 OH ( l ) + 3 O 2 (...Ch. 5 - Prob. 24QPCh. 5 - Prob. 25QPCh. 5 - Prob. 26QPCh. 5 - Prob. 27QPCh. 5 - Prob. 28QPCh. 5 - Prob. 29QPCh. 5 - Prob. 30QPCh. 5 - Prob. 31QPCh. 5 - For most biological processes, the changes in...Ch. 5 - Prob. 33QPCh. 5 - 5.34 Define calorimetry and describe two commonly...Ch. 5 - A 6.22-kg piece of copper metal is heated from 20...Ch. 5 - Prob. 36QPCh. 5 - Prob. 37QPCh. 5 - A 0.1375-g sample of solid magnesium is burned in...Ch. 5 - A quantity of 2 .00 × 10 2 mL of 0 .862 M HCl is...Ch. 5 - 5.40 A 50.75 g sample of water at is added to a...Ch. 5 - A 25.95-g sample of methanol at 35 .6°C is added...Ch. 5 - A piece of silver with a mass of 362 g has a heat...Ch. 5 - Prob. 43QPCh. 5 - Consider the following data: Metal Al Cu Mass(g)...Ch. 5 - Prob. 45QPCh. 5 - Prob. 46QPCh. 5 - Prob. 47QPCh. 5 - Prob. 48QPCh. 5 - Prob. 49QPCh. 5 - Prob. 50QPCh. 5 - 5.57 Determine the value of for the following...Ch. 5 - Prob. 52QPCh. 5 - Prob. 53QPCh. 5 - Prob. 54QPCh. 5 - Prob. 55QPCh. 5 - Prob. 56QPCh. 5 - Prob. 57QPCh. 5 - Prob. 58QPCh. 5 - Prob. 59QPCh. 5 - Prob. 60QPCh. 5 - Prob. 61QPCh. 5 - Prob. 62QPCh. 5 - Prob. 63QPCh. 5 - Prob. 64QPCh. 5 - Prob. 65QPCh. 5 - Prob. 66QPCh. 5 - Prob. 67QPCh. 5 - Prob. 68QPCh. 5 - Pentaborane - 9 ( B 5 H 9 ) is a colorless, highly...Ch. 5 - Prob. 70QPCh. 5 - Prob. 71QPCh. 5 - Prob. 72QPCh. 5 - Prob. 73QPCh. 5 - Prob. 74QPCh. 5 - Prob. 75APCh. 5 - Prob. 76APCh. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Prob. 79APCh. 5 - Prob. 80APCh. 5 - Prob. 81APCh. 5 - Prob. 82APCh. 5 - Ethanol ( C 2 H 5 OH ) and gasoline (assumed to be...Ch. 5 - Prob. 84APCh. 5 - The heat of vaporization of a liquid ( Δ H vap )...Ch. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - Prob. 89APCh. 5 - Prob. 90APCh. 5 - 5.97 The enthalpy of combustion of benzoic add is...Ch. 5 - 5.98 At , the standard enthalpy of formation of...Ch. 5 - From the enthalpy of formation for CO, and the...Ch. 5 - In the nineteenth century, two scientists named...Ch. 5 - Prob. 95APCh. 5 - Prob. 96APCh. 5 - Prob. 97APCh. 5 - A quantity of 85 .0 mL of 0 .600 M HCl is mixed...Ch. 5 - Prob. 99APCh. 5 - Prob. 100APCh. 5 - A 4.117-g impure sample of glucose (C 4 H 12 O 6 )...Ch. 5 - Prob. 102APCh. 5 - In a constant-pressure calorimetry experiment, a...Ch. 5 - Prob. 104APCh. 5 - Give an example for each of the following...Ch. 5 - Prob. 106APCh. 5 - Prob. 107APCh. 5 - 5.114 A 3.52-g sample of ammonium nitrate was...Ch. 5 - 5.115 A quantity of is mixed with in a...Ch. 5 - Prob. 110APCh. 5 - Prob. 111APCh. 5 - Prob. 112APCh. 5 - Prob. 113APCh. 5 - Prob. 114APCh. 5 - 5.121 A gas company in Massachusetts charges 27...Ch. 5 - Prob. 116APCh. 5 - For reactions in condensed phases ( liquids and...Ch. 5 - Prob. 118APCh. 5 - Prob. 119APCh. 5 - The so-called hydrogen economy is based on...Ch. 5 - Prob. 121APCh. 5 - 5.128 Calculate the standard enthalpy change for...Ch. 5 - Prob. 123APCh. 5 - Prob. 124APCh. 5 - Why are cold, damp air and hot, humid air more...Ch. 5 - A woman expends 95 kJ of energy walking a...Ch. 5 - The carbon dioxide exhaled by sailors in a...Ch. 5 - Prob. 128APCh. 5 - Acetylene ( C 2 H 2 ) can be made by combining...Ch. 5 - (a) A person drinks four glasses of cold water ( 3...Ch. 5 - Both glucose and fructose are simple sugars with...Ch. 5 - Prob. 132APCh. 5 - Prob. 133APCh. 5 - Prob. 134APCh. 5 - Prob. 135APCh. 5 - Prob. 136APCh. 5 - 5.143 Hydrazine decomposes to form ammonia and...Ch. 5 - Prob. 138APCh. 5 - Prob. 1SEPPCh. 5 - What is the heat capacity ( C v ) of the...Ch. 5 - What is the energy content of the food? a) 22 .8...Ch. 5 - 4. What would be the effect on the result if the...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Three reactions very important to the semiconductor industry are The reduction of silicon dioxide to crude silicon, SiO2(s) + 2 C(s) → Si(s) + 2 CO(g) ΔrH° = 689.9 kJ/mol The formation of silicon tetrachloride from crude silicon, Si(s) + 2 Cl2(g) → SiCl4(g) ΔrH° = −657.01 kJ/mol The reduction of silicon tetrachloride to pure silicon with magnesium, SiCl4(g) + 2 Mg(s) → 2 MgCl2(s) + Si(s) ΔrH° = −625.6 kJ/mol Calculate the overall enthalpy change when 1.00 mol sand, SiO2, changes into very pure silicon by this series of reactions.arrow_forward9.52 Write the formation reaction for each of the following substances. (a) CH4(g) , (b) C3H(l) , (c) HCI(g), (d) C6H12O6(s) , (e) NaF(s)arrow_forwardCalculate H298 for the process Sb(s)+52Cl2(g)SbCl4(s) from the following information: Sb(s)+32Cl2(g)SbCl3(s)H298=314kJSbCl(s)+Cl2(g)SbCl5(g)H298=80kJarrow_forward
- The thermite reaction was once used to weld rails: 2Al(s)+Fe2O3(s)Al2O3(s)+2Fe(s)(a) Using heat of formation data, calculate H for this reaction. (b) Take the specific heats of Al2O3 and Fe to be 0.77 and 0.45 J/g C, respectively. Calculate the temperature to which the products of this reaction will be raised, starting at room temperature, by the heat given off in the reaction. (c) Will the reaction produce molten iron (mpFe=1535C,Hfus=270J/g)?arrow_forwardA reaction used to produce the silicon for semiconductors from sand (SiO2), can be broken up into three steps: SiO2(s)+2C(s)Si(s)+2CO(g)H=689.9kJ Si(s)+2Cl2(s)SiCl4(g)H=657.0kJ SiCl4(g)+2Mg(s)2MgCl2(g)+Si(s)H=625.6kJ (a) Write a thermochemical equation for the overall reaction where silicon is obtained from silicon dioxide and CO and MgCl2 are by-products. (b) What is H for the formation of one mole of silicon? (c) Is the overall reaction exothermic?arrow_forwardWhat quantity of heat energy must have en applied to a block of aluminum weighing 42.7 g if the temperature of the block of aluminum increased by 15.2 °C? (See Table 10.1.)arrow_forward
- The reaction of quicklime, CaO, with water produces slaked lime, Ca(OH)2, which is widely used in the construction industry to make mortar and plaster. The reaction of quicklime and water is highly exothermic: CaO(s)+H2O(l)Ca(OH)2(s)H=350kJmol1 (a) What is the enthalpy of reaction per gram of quicklime that reacts?. (b) How much heat, in kilojoules, is associated with the production of 1 ton of slaked lime?arrow_forwardThe space shuttle Orbiter utilizes the oxidation of methylhydrazine by dinitrogen tetroxide for propulsion: 4N2H3CH3(l)+5N2O4(l)12H2O(g)+9N2(g)+4CO2(g) Calculate H for this reactionarrow_forwardHow much heat is produced when 1.25 g of chromium meta’ reacts with oxygen gas under standard conditions?arrow_forward
- An important source of copper is from the copper ore, chalcocite, a form of copper(I) sulfide. When heated, the Cu2S decomposes to form copper and sulfur described by the following equation: Cu2S(s)Cu(s)+S(s) (a) Determine G298 for the decomposition of Cu2S(s). (b) The reaction of sulfur with oxygen yields sulfur dioxide as the only product. Write an equation that describes this reaction, and determine G298 for the process. (c) The production of copper from chalcocite is performed by roasting the Cu2S in air to produce the Cu. By combining the equations from Parts (a) and (b), write the equation that describes the roasting of the chalcocite, and explain why coupling these reactions together makes for a more efficient process for the production of the copper.arrow_forward9.56 Using heats of formation tabulated in Appendix E, calculate the heats of reaction for the following. (a) C2H2(g)+52O2(g)2CO2(g)+H2O(l) (b) PCl3(g)+Cl2(g)PCl5(g) (c) C2H4(g)+H2O(g)C2H5OH(g) (d) Fe2O3(s)+2Al(s)Al2O3(s)+2Fe(l)arrow_forwardCalculate the standard molar enthalpy of formation of NO(g) from the following data: N2(g)+2O22NO2(g)H298=66.4kJ2NO(g)+O22NO2(g)H298=114.1kJarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Chemistry by OpenStax (2015-05-04)
Chemistry
ISBN:9781938168390
Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark Blaser
Publisher:OpenStax
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Calorimetry Concept, Examples and Thermochemistry | How to Pass Chemistry; Author: Melissa Maribel;https://www.youtube.com/watch?v=nSh29lUGj00;License: Standard YouTube License, CC-BY