Concept explainers
A quantity of
Interpretation:
The final temperature of the reaction taking place in constant-pressure calorimeter, when given amount of
Concept introduction:
Heat absorbed or released in the reaction is given by:
Here,
Specific heat is the heat required to increase the temperature of
Heat absorbed or released in the reaction is also given by:
Here,
Heat capacity is defined as the heat required to increase the temperature of a body by1°C.
Its S.I. unit is
Concentration (molarity) of a solution is given by:
Here,
Answer to Problem 109AP
Solution:
Explanation of Solution
Given information:
Molar heat of neutralisation is
Heat capacity
Concentration (molarity) of a solution is given by:
It can be rewritten as
Equation for the ionization of
So, it is clear that
The number of moles of
Substitute
Equation for the ionization of
So, it is clear that
The number of moles of
Substitute
Now, the heat produced by the reaction is calculated by:
Substitute
It is known that
Therefore,
However, the heat of the surroundings includes the heat of water and the heat of the calorimeter. So,
Mass of
Substitute
Substitute
So, the change in temperature iscalculated as
Therefore, the final temperature iscalculated as
The final temperature of the reactiontaking place in constant-pressure calorimeter is
Want to see more full solutions like this?
Chapter 5 Solutions
Chemistry
Additional Science Textbook Solutions
The Organic Chem Lab Survival Manual: A Student's Guide to Techniques
Basic Chemistry (5th Edition)
Chemistry & Chemical Reactivity
Introductory Chemistry (6th Edition)
Essential Organic Chemistry (3rd Edition)
Chemistry & Chemical Reactivity
- Graphite is burned in oxygen to give carbon monoxide and carbon dioxide. If the product mixture is 33% CO and 67% CO2 by mass, what is the heat from the combustion of 1.00 g of graphite?arrow_forwardA 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardWhen lightning strikes, the energy can force atmospheric nitrogen and oxygen to react to make NO: N2(g)+O2(g)2NO(g)H=+181.8kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = +181.8 kJ? (c) What is the enthalpy change when 3.50 g nitrogen is reacted with excess O2(g)?arrow_forward
- What mass of acetylene, C2H2(g), must be burned to produce 3420 kJ of heat, given that its enthalpy of combustion is 1301 kJ/mol? Compare this with the answer to Exercise 5.91 and determine which substance produces more heat per gram.arrow_forwardWhen one mole of ethylene gas, C2H4, reacts with fluorine gas, hydrogen fluoride and carbon tetrafluoride gases are formed and 2496.7 kJ of heat are given off. What is Hf for CF4(g)?arrow_forwardIn a calorimetric experiment, 6.48 g of lithium hydroxide, LiOH, was dissolved in water. The temperature of the calorimeter rose from 25.00C to 36.66C. What is H for the solution process? LiOH(s)Li(aq)+OH(aq) The heat capacity of the calorimeter and its contents is 547 J/C.arrow_forward
- How much heat is produced when loo mL of 0.250 M HCl (density, 1.00 g/mL) and 200 mL of 0.150 M NaOH (density, 1.00 g/mL) are mixed? HCl(aq)+NaO(aq)NaCl(aq)+H2O(l)H298=58kJ If both solutions are at the same temperature and the heat capacity of the products is 4.19 J/g C, how much will the temperature increase? What assumption did you make in your calculation?arrow_forwardThe thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forward9.41 Under what conditions does the enthalpy change equal the heat of a process?arrow_forward
- The enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forwardA 29.1-mL sample of 1.05 M KOH is mixed with 20.9 mL of 1.07 M HBr in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 21.8C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, and volumes are additive.arrow_forwardA 21.3-mL sample of 0.977 M NaOH is mixed with 29.5 mL of 0.918 M HCl in a coffee-cup calorimeter (see Section 6.6 of your text for a description of a coffee-cup calorimeter). The enthalpy of the reaction, written with the lowest whole-number coefficients, is 55.8 kJ. Both solutions are at 19.6C prior to mixing and reacting. What is the final temperature of the reaction mixture? When solving this problem, assume that no heat is lost from the calorimeter to the surroundings, the density of all solutions is 1.00 g/mL, the specific heat of all solutions is the same as that of water, and volumes are additive.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co