Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 5, Problem 98CP

Initially, the system of objects shown in Figure P5.49 is held motionless. The pulley and all surfaces and wheels are frictionless. Let the force F be zero and assume that m1 can move only vertically. At the instant after the system of objects is released, Find (a) the tension T in the string, (b) the acceleration of m2, (c) the acceleration of M, and (d) the acceleration of m1. (Note: The pulley accelerates along with the cart.)

Figure P5.49 Problems 49 and 53

Chapter 5, Problem 98CP, Initially, the system of objects shown in Figure P5.49 is held motionless. The pulley and all

(a)

Expert Solution
Check Mark
To determine

The tension in the string.

Answer to Problem 98CP

Solution: The tension in the string is m2g(m1Mm2M+m1(m2+M)) .

Explanation:

Explanation of Solution

Given info: The mass of large block is M , the mass of top block is m2 , the mass of hanging block is m1 , the tension in string is T and the force F is zero.

Consider the free body diagram given below,

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University, Chapter 5, Problem 98CP

Figure I

In above figure,

  • a is the acceleration of hanging block having mass m1 .
  • A is the acceleration of large block having mass M .
  • aA is the acceleration of top block having mass m2 .

The equilibrium condition for hanging block is,

m1gT=m1aT=m1(ga) (I)

  • g is the acceleration due to gravity.

The equilibrium condition for top block is,

T=m2(aA)a=Tm2+A (II)

The equilibrium condition for large block is,

MA=TA=TM (III)

Substitute (Tm2+A) for a and TM for A in equation (I) to find T .

T=m1(g(Tm2+A))=m1(g(Tm2+TM))=m1g(m1Tm2+m1TM)=m1gm1T(M+m2Mm2)

Further, solve for T .

T=m1gm1T(M+m2Mm2)T+m1T(M+m2Mm2)=m1gT=m2g(m1Mm2M+m1(m2+M))

Conclusion:

Therefore, the tension in the string is m2g(m1Mm2M+m1(m2+M)) .

(b)

Expert Solution
Check Mark
To determine

The acceleration of m2 .

Answer to Problem 98CP

Solution: The acceleration of m2 is m1g(M+m2)Mm2+m1(M+m2) .

Explanation of Solution

Given info: The mass of large block is M , the mass of top block is m2 , the mass of hanging block is m1 , the tension in string is T and the force F is zero.

The force applied on the block of mass M is zero initially and the block of mass m2 has acceleration in synchronization with the big block so the net acceleration on the block is a .

Substitute TM for A in equation (II).

a=Tm2+TM=T(M+m2Mm2)

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in above equation to find a .

a=(m1g(Mm2Mm2+m1(M+m2)))(M+m2Mm2)=m1g(M+m2)Mm2+m1(M+m2)

Conclusion:

Therefore, the acceleration of m2 is m1g(M+m2)Mm2+m1(M+m2) .

(c)

Expert Solution
Check Mark
To determine

The acceleration of M .

Answer to Problem 98CP

Solution: The acceleration of M is m1m2gm2M+m1(m2+M) .

Explanation of Solution

Given info: The mass of large block is M , the mass of top block is m2 , the mass of hanging block is m1 , the tension in string is T and the force F is zero.

The acceleration of M is A .

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in equation (II).

A=m1g(Mm2Mm2+m1(M+m2))M=m1m2gm2M+m1(m2+M)

Conclusion:

Therefore, the acceleration of M is m1m2gm2M+m1(m2+M) .

(d)

Expert Solution
Check Mark
To determine

The acceleration of m1 .

Answer to Problem 98CP

Solution: The acceleration of m1 is Mm1gMm2+m1(M+m2) .

Explanation of Solution

Given info: The mass of large block is M , the mass of top block is m2 , the mass of hanging block is m1 , the tension in string is T and the force F is zero.

The block of mass m1 moves in vertical direction only but the net acceleration is the difference between the acceleration of the big block of mass M and the acceleration a of m2 .

The formula to calculate the acceleration of m1 is,

am1=aA . (4)

Substitute m1g(Mm2Mm2+m1(M+m2)) for T in equation (II).

A=m1g(Mm2Mm2+m1(M+m2))M=m1m2gm2M+m1(m2+M)

Substitute (m1g(M+m2)Mm2+m1(M+m2)) for a and m1m2gm2M+m1(m2+M) for A in equation (4) to find the value of aA .

aA=(m1g(M+m2)Mm2+m1(M+m2))(m1m2gMm2+m1(M+m2))=(Mm1gMm2+m1(M+m2))

Conclusion:

Therefore, the acceleration of m1 is Mm1gMm2+m1(M+m2) .

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Defination of voltage
At point A, 3.20 m from a small source of sound that is emitting uniformly in all directions, the intensity level is 58.0 dB. What is the intensity of the sound at A? How far from the source must you go so that the intensity is one-fourth of what it was at A? How far must you go so that the sound level is one-fourth of what it was at A?
Make a plot of the acceleration of a ball that is thrown upward at 20 m/s subject to gravitation alone (no drag). Assume upward is the +y direction (and downward negative y).

Chapter 5 Solutions

Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University

Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License