Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 44P
(a)
To determine
The tensions in upper and the lower strings.
(b)
To determine
The string which breaks first.
(c)
To determine
Tension in the strings when the cable of elevator breaks.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 22 kg loudspeaker is suspended 2.4 m below the ceiling by two 2.70 m long cables that angle outward at equal angles. What is the tension in each of the cables?
Two masses are connected by a rigid link as shown in Fig. Q3. The masses are resting on
an inclined plane. The masses are then released. Considering the coefficient of kinetic
friction between the inclined plane and the masses A and B are 0.1 and 0.2 respectively.
3.
Compute by using Newton's second law
a) The acceleration of both masses.
b) The force in the rigid link and specify whether it is in tension or compression.
8kg
В
4kg
25°
Fig. Q3
A block of mass M is suspended at rest by two strings attached to walls, as shown in the figure. The left string is horizontal with tension force T2 and and the right string with tension force T1 makes an angle θ with the horizontal. g is the magnitude of the gravitational acceleration. Which of the following statements is true? Select all apply.
The net force along the y-component is zero.
The acceleration along the y-component is non-zero.
The net force along the y-component is non-zero.
The net force along the x-component is zero.
The acceleration along the y-component is zero.
The acceleration along the x-component is non-zero.
The acceleration along the x-component is zero.
The net force along the x-component is non-zero.
Chapter 5 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 5.2 - Which of the following statements is correct? (a)...Ch. 5.4 - An object experiences no acceleration. Which of...Ch. 5.4 - You push an object, initially at rest, across a...Ch. 5.5 - Suppose you are talking by interplanetary...Ch. 5.6 - (i) If a fly collides with the windshield of a...Ch. 5.8 - You press your physics textbook flat against a...Ch. 5.8 - Prob. 5.7QQCh. 5 - The driver of a speeding empty truck slams on the...Ch. 5 - In Figure OQ5.2, a locomotive has broken through...Ch. 5 - Prob. 3OQ
Ch. 5 - Prob. 4OQCh. 5 - Prob. 5OQCh. 5 - The manager of a department store is pushing...Ch. 5 - Two objects are connected by a string that passes...Ch. 5 - Prob. 8OQCh. 5 - A truck loaded with sand accelerates along a...Ch. 5 - A large crate of mass m is place on the flatbed of...Ch. 5 - If an object is in equilibrium, which of the...Ch. 5 - A crate remains stationary after it has been...Ch. 5 - An object of mass m moves with acceleration a down...Ch. 5 - Prob. 1CQCh. 5 - Your hands are wet, and the restroom towel...Ch. 5 - In the motion picture It Happened One Night...Ch. 5 - If a car is traveling due westward with a constant...Ch. 5 - A passenger sitting in the rear of a bus claims...Ch. 5 - A child tosses a ball straight up. She says that...Ch. 5 - A person holds a ball in her hand. (a) Identify...Ch. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Twenty people participate in a tug-of-war. The two...Ch. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - A weightlifter stands on a bathroom scale. He...Ch. 5 - Prob. 14CQCh. 5 - Suppose you are driving a classic car. Why should...Ch. 5 - Prob. 16CQCh. 5 - Describe two examples in which the force of...Ch. 5 - The mayor of a city reprimands some city employees...Ch. 5 - Give reasons for the answers to each of the...Ch. 5 - Prob. 20CQCh. 5 - Identify actionreaction pairs in the following...Ch. 5 - Prob. 22CQCh. 5 - Prob. 23CQCh. 5 - A certain orthodontist uses a wire brace to align...Ch. 5 - If a man weighs 900 N on the Earth, what would he...Ch. 5 - A 3.00-kg object undergoes an acceleration given...Ch. 5 - Prob. 4PCh. 5 - Prob. 5PCh. 5 - The average speed of a nitrogen molecule in air is...Ch. 5 - Prob. 7PCh. 5 - Prob. 8PCh. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. The gravitational force exerted on a...Ch. 5 - Review. An electron of mass 9. 11 1031 kg has an...Ch. 5 - Prob. 12PCh. 5 - One or more external forces, large enough to be...Ch. 5 - A brick of mass M has been placed on a rubber...Ch. 5 - Two forces, F1=(6.00i4.00j)N and...Ch. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - You stand on the seat of a chair and then hop off....Ch. 5 - Prob. 21PCh. 5 - Review. Three forces acting on an object are given...Ch. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - Review. Figure P5.15 shows a worker poling a boata...Ch. 5 - An iron bolt of mass 65.0 g hangs from a string...Ch. 5 - Prob. 27PCh. 5 - The systems shown in Figure P5.28 are in...Ch. 5 - Prob. 29PCh. 5 - A block slides down a frictionless plane having an...Ch. 5 - The distance between two telephone poles is 50.0...Ch. 5 - A 3.00-kg object is moving in a plane, with its x...Ch. 5 - A bag of cement weighing 325 N hangs in...Ch. 5 - A bag of cement whose weight is Fg hangs in...Ch. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - An object of mass m = 1.00 kg is observed to have...Ch. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - An object of mass m1 = 5.00 kg placed on a...Ch. 5 - Prob. 41PCh. 5 - Two objects are connected by a light string that...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - In the system shown in Figure P5.23, a horizontal...Ch. 5 - An object of mass m1 hangs from a string that...Ch. 5 - A block is given an initial velocity of 5.00 m/s...Ch. 5 - A car is stuck in the mud. A tow truck pulls on...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - In Example 5.8, we investigated the apparent...Ch. 5 - Consider a large truck carrying a heavy load, such...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - A 25.0-kg block is initially at rest on a...Ch. 5 - Why is the following situation impassible? Your...Ch. 5 - Prob. 57PCh. 5 - Before 1960m people believed that the maximum...Ch. 5 - Prob. 59PCh. 5 - A woman at an airport is towing her 20.0-kg...Ch. 5 - Review. A 3.00-kg block starts from rest at the...Ch. 5 - The person in Figure P5.30 weighs 170 lb. As seen...Ch. 5 - A 9.00-kg hanging object is connected by a light,...Ch. 5 - Three objects are connected on a table as shown in...Ch. 5 - Prob. 65PCh. 5 - A block of mass 3.00 kg is pushed up against a...Ch. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - A 5.00-kg block is placed on top of a 10.0-kg...Ch. 5 - Prob. 71PCh. 5 - A black aluminum glider floats on a film of air...Ch. 5 - Prob. 73APCh. 5 - Why is the following situation impossible? A book...Ch. 5 - Prob. 75APCh. 5 - A 1.00-kg glider on a horizontal air track is...Ch. 5 - Prob. 77APCh. 5 - Prob. 78APCh. 5 - Two blocks of masses m1 and m2, are placed on a...Ch. 5 - Prob. 80APCh. 5 - An inventive child named Nick wants to reach an...Ch. 5 - Prob. 82APCh. 5 - Prob. 83APCh. 5 - An aluminum block of mass m1 = 2.00 kg and a...Ch. 5 - Prob. 85APCh. 5 - Prob. 86APCh. 5 - Prob. 87APCh. 5 - Prob. 88APCh. 5 - A crate of weight Fg is pushed by a force P on a...Ch. 5 - Prob. 90APCh. 5 - A flat cushion of mass m is released from rest at...Ch. 5 - In Figure P5.46, the pulleys and pulleys the cord...Ch. 5 - What horizontal force must be applied to a large...Ch. 5 - Prob. 94APCh. 5 - A car accelerates down a hill (Fig. P5.95), going...Ch. 5 - Prob. 96CPCh. 5 - Prob. 97CPCh. 5 - Initially, the system of objects shown in Figure...Ch. 5 - A block of mass 2.20 kg is accelerated across a...Ch. 5 - Prob. 100CPCh. 5 - Prob. 101CPCh. 5 - In Figure P5.55, the incline has mass M and is...Ch. 5 - Prob. 103CPCh. 5 - Prob. 104CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the three connected objects shown in Figure P5.43. Assume first that the inclined plane is frictionless and that the system is in equilibrium. In terms of m, g, and , find (a) the mass M and (b) the tensions T1 and T2. Now assume that the value of M is double the value found in part (a). Find (c) the acceleration of each object and (d) the tensions T1 and T2. Next, assume that the coefficient of static friction between m and 2m and the inclined plane is s and that the system is in equilibrium. Find (e) the maximum value of M and (f) the minimum value of M. (g) Compare the values of T2 when M has its minimum and maximum values. Figure P5.43arrow_forwardTwo blocks, each of mass m, are hung from the ceiling of an elevator as in Figure P4.33. The elevator has an upward acceleration a. The strings have negligible mass. (a) Find the tensions T1 and T2 in the upper and lower strings in terms of m, a, and g. (b) Compare the two tensions and determine which string would break first if a is made sufficiently large. (c) What are the tensions if the cable supporting the elevator breaks? Figure P4.33 Problems 33 and 34.arrow_forwardTwo blocks, each of mass m = 3.50 kg, are hung from the ceiling of an elevator as in Figure P4.33. (a) If the elevator moves with an upward acceleration a of magnitude 1.60 m/s2, find the tensions T1 and T2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0 N, what maximum acceleration can the elevator have before a string breaks? Figure P4.33 Problems 33 and 34.arrow_forward
- A black widow spider hangs motionless from a web that extends vertically from the ceiling above. If the spider has a mass of 1.5 g, what is the tension in the web?arrow_forwardThe rock is hanging from the middle of a clothesline. The rope is attached at equal heights 24 units apart and the entre point sags 1 unit below them. What is the tension if he has a mass of 20kg?arrow_forwardHopeful for greater opportunities, Juan applies for an international scholarship. Fortunately, he gotaccepted and is now at the airport to travel to New Zealand. Waiting on queue at the entrance, Juanis holding his 30kg luggage up on a ramp that is inclined at an angle of 10° from the horizontal.He is holding on to his luggage at an angle of 65° from the ramp. Compute for the tension theluggage exerts on his hand and the normal force.arrow_forward
- A 2000kg elevator has a downward acceleration of 1.0 m/s/s. (a) What is the tension in its supporting cable? (b) The same elevator later has an upward acceleration of 1.5 m/s/s. What is the tension in the cable now?arrow_forwardPlease write the solution clearlyarrow_forwardYou go to slide your chair out from under the table at Thanksgiving at your grandma's house. She hasn't updated the terrible mint-colored carpet in her dining room in the last 40 years. The combined mass of you and your chair is 62.0 kg and the coefficient of static friction between the chair legs and the carpet is 0.71. You push backwards with your feet using a force of 350 N. Imagine this force to be horizontal. What is your acceleration during this 350 N push? b. Why is it always easier to slide out if you try to stand up while you do it? No math, just logic. What effective mass do you and the chair need to have in order to allow the 350 N push to start the chair moving? 1:1 T. 1/ - MacBook ✪ F6 F3 F4 F5 F7 ▷11 F8 F9 F10arrow_forward
- A car is stuck in the mud. A tow truck pulls on the car with the arrangement shown in Figure P5.24. The tow cable is under a tension of 2500 N and pulls downward and to the left on the pin at its upper end. The light pin is held in equilibrium by forces exerted by the two bars A and B. Each bar is a strut; that is, each is a bar whose weight is small compared to the forces it exerts and which exerts forces only through hinge pins at its ends. Each strut exerts a force directed parallel to its length. Determine the force of tension or compression in each strut. Proceed as follows. Make a guess as to which way (pushing or pulling) each force acts on the top pin. Draw a free-body diagram of the pin. Use the condition for equilibrium of the pin to translate the free-body diagram into equations. From the equations calculate the forces exerted by struts A and B. If you obtain a positive answer, you correctly guessed the direction of the force. A negative answer means that the direction…arrow_forwardConsider the three connected objects shown in Figure P5.88. Assume first that theinclined plane is friction-less and that the system is in equilibrium. In terms of m, g,and θ, find (a) the mass M and (b) the tensions T, and T2. Now assume that the valueof Af is double the value found in part (a). Find (c) the acceleration of each object and(d) the tensions T1 and T2. Next, assume that the coefficient of static friction betweenm and 2m and the inclined plane is m, and that the system is in equilibrium. Find (e)the maximum value of M and (0 the minimum value of M. (g) Compare the values of T2when M has its minimum and maximum values.arrow_forwardJoe pushes down the length of the handle of a 14.1 kg lawn spreader. The handle makes an angle of 47.1° with the horizontal. Joe wishes to accelerate the spreader from rest to 1.39 m/s in 1.7 s. What force must Joe apply to the handle? Answer in units of N.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY