A flat cushion of mass m is released from rest at the corner of the roof of a building, at height h . A wind blowing along the side of the building exerts a constant horizontal force of magnitude F on the cushion as it drops as shown in Figure P5.48. The air exerts no vertical force. (a) Show that the path of the cushion is a straight line. (b) Does die cushion fall with constant velocity? Explain. (c) If m = 1.20 kg, h = 8.00 m, and F = 2.40 N, how far from the building will the cushion hit the level ground? What If? (d) If the cushion is thrown downward with a nonzero speed at the top of the building, what will be the shape of its trajectory? Explain. Figure P5.48
A flat cushion of mass m is released from rest at the corner of the roof of a building, at height h . A wind blowing along the side of the building exerts a constant horizontal force of magnitude F on the cushion as it drops as shown in Figure P5.48. The air exerts no vertical force. (a) Show that the path of the cushion is a straight line. (b) Does die cushion fall with constant velocity? Explain. (c) If m = 1.20 kg, h = 8.00 m, and F = 2.40 N, how far from the building will the cushion hit the level ground? What If? (d) If the cushion is thrown downward with a nonzero speed at the top of the building, what will be the shape of its trajectory? Explain. Figure P5.48
Solution Summary: The author explains that the acceleration of any object is defined as the rate of change of the velocity on an object with respect to time.
A flat cushion of mass m is released from rest at the corner of the roof of a building, at height h. A wind blowing along the side of the building exerts a constant horizontal force of magnitude F on the cushion as it drops as shown in Figure P5.48. The air exerts no vertical force. (a) Show that the path of the cushion is a straight line. (b) Does die cushion fall with constant velocity? Explain. (c) If m = 1.20 kg, h = 8.00 m, and F = 2.40 N, how far from the building will the cushion hit the level ground? What If? (d) If the cushion is thrown downward with a nonzero speed at the top of the building, what will be the shape of its trajectory? Explain.
I do not understand the process to answer the second part of question b. Please help me understand how to get there!
Rank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative.
Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them.
▸ View Available Hint(s)
[most negative
91 = +1nC
92 = +1nC
91 = -1nC
93 = +1nC
92- +1nC
93 = +1nC
-1nC
92- -1nC
93- -1nC
91= +1nC
92 = +1nC
93=-1nC
91
+1nC
92=-1nC
93=-1nC
91 = +1nC
2 = −1nC
93 = +1nC
The correct ranking cannot be determined.
Reset
Help
most positive
Part A
Find the x-component of the electric field at the origin, point O.
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz =
Η ΑΣΦ
?
N/C
Submit
Part B
Now, assume that charge q2 is negative; q2 = -6 nC, as shown in (Figure 2). What is the x-component of the net electric field at the origin, point O?
Express your answer in newtons per coulomb to three significant figures, keeping in mind that an x component that points to the right is positive.
▸ View Available Hint(s)
Eoz=
Η ΑΣΦ
?
N/C
Chapter 5 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.