Concept explainers
The range of the values of the mass m2 so that the two connected blocks resting on two inclined planes are in equilibrium.
Answer to Problem 83QAP
The mass m2 can have values between 3.51 kg and 52.64 kg for the system of masses to be in equilibrium.
Explanation of Solution
Given info:
Formula used:
From the diagram given, if the value of m2 falls below a certain value, it would slide up the plane and the block of mass m1 would slide down. This gives the value of the minimum mass of m2.
If the value of m2 increases beyond a certain value, the block would slide down the plane and the block of mass m1 would slide up.
By drawing the free body diagrams for each case, and applying the force equations for each case, the range of the values of m2 can be determined.
Explanation and Calculation:
Case 1:
Consider the case when the block 1slides down the plane and the block 2 slides up the plane.
The free body diagram for m1 is shown below:
The block rests on an incline which makes an angle
The weight
Resolve the weight w1 into components along the +x and −y directions as shown. The magnitudes of the components are given by,
Write the force equation along the +y direction.
Since the block is in equilibrium,
Therefore,
The force of friction is given by,
The system is in equilibrium along the x direction too. Therefore,
Using equations (1) and (2), in the above equation,
In a similar manner, construct a free body diagram for the block 2.
The block rests on an incline which makes an angle
The weight
Resolve the weight w2 into components along the −x and −y directions as shown. The magnitudes of the components are given by,
Write the force equation along the +y direction and apply the condition for equilibrium.
Therefore,
The force of friction is given by,
The system is in equilibrium along the x direction too. Therefore,
Using equations (4) and (6), in the above equation,
Add equations (3) and (7) and write an expression for m2.
Substitute the known values of the variables in the expression and calculate the value of m2.
The minimum value of m2 for which the system is in equilibrium is 3.51 kg.
Case 2:
Consider the case when the block 1slides up the plane and the block 2 slides down the plane.
The free body diagram for m1 is shown below:
Assume the +x direction up the incline and the +y direction perpendicular to the plane. The weight
The equations (1) and (2) are applied to this free body diagram too.
Write the condition for equilibrium along the x direction.
Use equations (1) and (2) in the expression.
In a similar manner, construct a free body diagram for the block 2.
. Assume a coordinate system which has the +x direction pointing down the plane and the +y direction perpendicular to the plane away from it. The weight
The equations (4), (5) and (6) are valid for this case too.
Write the equation for equilibrium along the x direction.
Using equations (4) and (6) in the expression,
Add equations (8) and (9) and write an expression for m2.
Substitute the known values of the variables in the expression.
The maximum value of m2 for the system to be in equilibrium is 52.64 kg.
Conclusion:
Thus, the mass m2 can have values between 3.51 kg and 52.64 kg for the system of masses to be in equilibrium.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill