COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 86QAP
To determine
The minimum coefficient of static friction between the wall of the cylinder and the backs of the riders.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
EXAMPLE 22: On a normal day, the rated speed of a
hi-way curve of 100m radius is 65 kph. If the
coefficient of friction between the tires and the road is
0.60, what is the maximum speed in kph at which a
car can round the curve without skidding?
3/47 The small 0.6-kg block slides with a small amount of
friction on the circular path of radius 3 m in the ver-
tical plane. If the speed of the block is 5 m/s as it
passes point A and 4 m/s as it passes point B, deter-
mine the normal force exerted on the block by the
surface at each of these two locations.
30°
B
3 m
A
Problem 3/47
P2 = 6 m
A 1000 kg car starts from rest at 12 m
3
point 1 and moves without
friction down the track shown.
4-5 m
Determine:
2
a) the force exerted by the track on the car at point 2, and
b) the minimum safe value of the radius of curvature at point 3.
Chapter 5 Solutions
COLLEGE PHYSICS
Ch. 5 - Prob. 1QAPCh. 5 - Prob. 2QAPCh. 5 - Prob. 3QAPCh. 5 - Prob. 4QAPCh. 5 - Prob. 5QAPCh. 5 - Prob. 6QAPCh. 5 - Prob. 7QAPCh. 5 - Prob. 8QAPCh. 5 - Prob. 9QAPCh. 5 - Prob. 10QAP
Ch. 5 - Prob. 11QAPCh. 5 - Prob. 12QAPCh. 5 - Prob. 13QAPCh. 5 - Prob. 14QAPCh. 5 - Prob. 15QAPCh. 5 - Prob. 16QAPCh. 5 - Prob. 17QAPCh. 5 - Prob. 18QAPCh. 5 - Prob. 19QAPCh. 5 - Prob. 20QAPCh. 5 - Prob. 21QAPCh. 5 - Prob. 22QAPCh. 5 - Prob. 23QAPCh. 5 - Prob. 24QAPCh. 5 - Prob. 25QAPCh. 5 - Prob. 26QAPCh. 5 - Prob. 27QAPCh. 5 - Prob. 28QAPCh. 5 - Prob. 29QAPCh. 5 - Prob. 30QAPCh. 5 - Prob. 31QAPCh. 5 - Prob. 32QAPCh. 5 - Prob. 33QAPCh. 5 - Prob. 34QAPCh. 5 - Prob. 35QAPCh. 5 - Prob. 36QAPCh. 5 - Prob. 37QAPCh. 5 - Prob. 38QAPCh. 5 - Prob. 39QAPCh. 5 - Prob. 40QAPCh. 5 - Prob. 41QAPCh. 5 - Prob. 42QAPCh. 5 - Prob. 43QAPCh. 5 - Prob. 44QAPCh. 5 - Prob. 45QAPCh. 5 - Prob. 46QAPCh. 5 - Prob. 47QAPCh. 5 - Prob. 48QAPCh. 5 - Prob. 49QAPCh. 5 - Prob. 50QAPCh. 5 - Prob. 51QAPCh. 5 - Prob. 52QAPCh. 5 - Prob. 53QAPCh. 5 - Prob. 54QAPCh. 5 - Prob. 55QAPCh. 5 - Prob. 56QAPCh. 5 - Prob. 57QAPCh. 5 - Prob. 58QAPCh. 5 - Prob. 59QAPCh. 5 - Prob. 60QAPCh. 5 - Prob. 61QAPCh. 5 - Prob. 62QAPCh. 5 - Prob. 63QAPCh. 5 - Prob. 64QAPCh. 5 - Prob. 65QAPCh. 5 - Prob. 66QAPCh. 5 - Prob. 67QAPCh. 5 - Prob. 68QAPCh. 5 - Prob. 69QAPCh. 5 - Prob. 70QAPCh. 5 - Prob. 71QAPCh. 5 - Prob. 72QAPCh. 5 - Prob. 73QAPCh. 5 - Prob. 74QAPCh. 5 - Prob. 75QAPCh. 5 - Prob. 76QAPCh. 5 - Prob. 77QAPCh. 5 - Prob. 78QAPCh. 5 - Prob. 79QAPCh. 5 - Prob. 80QAPCh. 5 - Prob. 81QAPCh. 5 - Prob. 82QAPCh. 5 - Prob. 83QAPCh. 5 - Prob. 84QAPCh. 5 - Prob. 85QAPCh. 5 - Prob. 86QAPCh. 5 - Prob. 87QAPCh. 5 - Prob. 88QAPCh. 5 - Prob. 89QAPCh. 5 - Prob. 90QAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The coefficient of static friction for the tires of a race car is 0.800 and the coefficient of kinetic friction is 0.600. The car is on a level circular track of 25.0 m radius on a planet where g=2.45m/s^2 compared to Earth's 9.80m/s^2 . The maximum safe speed on the track on the planet is ____ times as large as the maximum safe speed on Earth. Question 2 options: 0.75 4.00 0.500 2.00 0.250arrow_forwardCar A uses tires for which the coefficient of static friction is 0.281 on a particular unbanked curve. The maximum speed at which the car can negotiate this curve is 11.0 m/s. Car B uses tires for which the coefficient of static friction is 0.812 on the same curve. What is the maximum speed at which car B can negotiate the curve?arrow_forwardDriving in your car with a constant speed of v = 22 m/s, you encounter a bump in the road that has a circular cross-section, as indicated in the figure (Figure 1). Part A For the steps and strategies involved in solving a similar problem, you may view the following Quick Example 6-17 video: If the radius of curvature of the bump is 52 m, find the apparent weight of a 66-kg person in your car as you pass over the top of the bump. SOLUTION Express your answer in newtons. We use Newton's secend lew 2R, = may ? Wa = Submit Request Answer Provide Feedback Figurearrow_forward
- In the figure, a stuntman drives a car (without negative lift) over the top of a hillI, the cross section of which can be approximated by a circle of radius R = 285 m. What is the greatest speed at which he can drive without the car leaving the road at the top of the hill? %3D Number i Unitsarrow_forwardB1arrow_forwardA block attains a velocity of 12 m/sec in a distance of 40 m starting from rest. Determine the coefficient of kinetic frietion between the block and the floor. 250 N P-125 Narrow_forward
- The drag coefficient C in FD=12CAv2 (Eq. 6.5) depends primarily on the shape of the object. You already have developed an intuition about what shapes correspond to a low C by observing the shapes of aerodynamic cars, boats, and even bullets. Which object, a sphere or a cube, would have a larger drag coefficient, assuming they are nearly the same size? Explain your reasoning. What aspect of an object most determines its drag coefficient?arrow_forwardLisa measured the coefficient of static friction between two pairs of running shoes and the track in Example 6.1 (page 159). If she wants to have an advantage in a race, which shoes should she wear, the ones with a high coefficient or the ones with the low coefficient of static friction? Explain.arrow_forward(a) Estimate the terminal speed of a wooden sphere (density 0.830 g/cm3) falling through air, taking its radius as 8.00 cm and its drag coefficient as 0.500. (b) From what height would a freely falling object reach this speed in the absence of air resistance?arrow_forward
- A child of mass 40.0 kg is in a roller coaster car that travels in a loop of radius 7.00 m. At point A the speed of the car is 10.0 m/s, and at point B, the speed is 10.5 m/s. Assume the child is not holding on and does not wear a seat belt. (a) What is the force of the car seat on the child at point A? (b) What is the force of the car seat on the child at point B? (c) What minimum speed is required to keep the child in his seat at point A?arrow_forwardIn a race like the Indianapolis 500, a driver circles the track counterclockwise and feels his head pulled toward one shoulder. To relieve his neck muscles from having to hold his head erect, the driver fastens a strap to one wall of the car and the other to his helmet. The length of the strap is adjusted to keep his head vertical. (a) Which shoulder does his head tend to lean toward? (b) What force or forces produce the centripetal acceleration when there is no strap? (c) What force or forces do so when there is a strap?arrow_forwardA basin surrounding a drain has the shape of a circular cone opening upward, having everywhere an angle of 35.0 with the horizontal. A 25.0-g ice cube is set sliding around the cone without friction in a horizontal circle of radius R. (a) Find the speed the ice cube must have as a function of R. (b) Is any piece of data unnecessary for the solution? Suppose R is made two times larger. (c) Will the required speed increase, decrease, or stay constant? If it changes, by what factor? (d) Will the time interval required for each revolution increase, decrease, or stay constant? If it changes, by what factor? (e) Do the answers to parts (c) and (d) seem contradictory ? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY