COLLEGE PHYSICS
COLLEGE PHYSICS
2nd Edition
ISBN: 9781464196393
Author: Freedman
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 5QAP
To determine

(a)

The effect of weight of the book when reduce the applying force to the book in the same spot on the wall.

Expert Solution
Check Mark

Answer to Problem 5QAP

The weight of the book is not changed.

Explanation of Solution

Introduction:

The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.

COLLEGE PHYSICS, Chapter 5, Problem 5QAP , additional homework tip  1

W= Weight of the bookf = Frictional forceR = Force on book by wallF = Force exerted on wall by book

W=mg

So the magnitude remains constant. Therefore weight stays the same.

Conclusion:

The weight stays the same.

To determine

(b)

The effect of the normal force of the wall on the book when reduce the applying force to the book in the same spot on the wall.

Expert Solution
Check Mark

Answer to Problem 5QAP

The normal force of the wall on the book decreases.

Explanation of Solution

Introduction:

The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.

COLLEGE PHYSICS, Chapter 5, Problem 5QAP , additional homework tip  2

W= Weight of the bookf = Frictional forceR = Force on book by wallF = Force exerted on wall by book

R=F

When applied force is reduced the normal force decreases.

Conclusion:

The normal force of the wall on the book decreases.

To determine

(c)

The effect of the frictional force of the wall on the book when reduce the applying force to the book in the same spot on the wall.

Expert Solution
Check Mark

Answer to Problem 5QAP

The frictional force of the wall on the book is not changed.

Explanation of Solution

Introduction:

The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.

COLLEGE PHYSICS, Chapter 5, Problem 5QAP , additional homework tip  3

W= Weight of the bookf = Frictional forceR = Force on book by wallF = Force exerted on wall by book

f=W

So the weight of the book is constant. Therefore the frictional force of the wall on the book stays same.

Conclusion:

The frictional force of the wall on the book stays same.

To determine

(d)

The effect of the maximum static frictional force of the wall on the book when reduce the applying force to the book in the same spot on the wall.

Expert Solution
Check Mark

Answer to Problem 5QAP

The maximum static frictional force of the wall on the book deceases.

Explanation of Solution

Introduction:

The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.

COLLEGE PHYSICS, Chapter 5, Problem 5QAP , additional homework tip  4

W= Weight of the bookf = Frictional forceR = Force on book by wallF = Force exerted on wall by book

fmax=μR

When F reduces R decreases. Since μ is constant, fmax also decreases.

Conclusion:

The maximum static frictional force of the wall on the book deceases.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Four capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μC
In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?
Four capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor  µC 6.00 µF capacitor  µC 3.00 µF capacitor  µC capacitor C  µC

Chapter 5 Solutions

COLLEGE PHYSICS

Ch. 5 - Prob. 11QAPCh. 5 - Prob. 12QAPCh. 5 - Prob. 13QAPCh. 5 - Prob. 14QAPCh. 5 - Prob. 15QAPCh. 5 - Prob. 16QAPCh. 5 - Prob. 17QAPCh. 5 - Prob. 18QAPCh. 5 - Prob. 19QAPCh. 5 - Prob. 20QAPCh. 5 - Prob. 21QAPCh. 5 - Prob. 22QAPCh. 5 - Prob. 23QAPCh. 5 - Prob. 24QAPCh. 5 - Prob. 25QAPCh. 5 - Prob. 26QAPCh. 5 - Prob. 27QAPCh. 5 - Prob. 28QAPCh. 5 - Prob. 29QAPCh. 5 - Prob. 30QAPCh. 5 - Prob. 31QAPCh. 5 - Prob. 32QAPCh. 5 - Prob. 33QAPCh. 5 - Prob. 34QAPCh. 5 - Prob. 35QAPCh. 5 - Prob. 36QAPCh. 5 - Prob. 37QAPCh. 5 - Prob. 38QAPCh. 5 - Prob. 39QAPCh. 5 - Prob. 40QAPCh. 5 - Prob. 41QAPCh. 5 - Prob. 42QAPCh. 5 - Prob. 43QAPCh. 5 - Prob. 44QAPCh. 5 - Prob. 45QAPCh. 5 - Prob. 46QAPCh. 5 - Prob. 47QAPCh. 5 - Prob. 48QAPCh. 5 - Prob. 49QAPCh. 5 - Prob. 50QAPCh. 5 - Prob. 51QAPCh. 5 - Prob. 52QAPCh. 5 - Prob. 53QAPCh. 5 - Prob. 54QAPCh. 5 - Prob. 55QAPCh. 5 - Prob. 56QAPCh. 5 - Prob. 57QAPCh. 5 - Prob. 58QAPCh. 5 - Prob. 59QAPCh. 5 - Prob. 60QAPCh. 5 - Prob. 61QAPCh. 5 - Prob. 62QAPCh. 5 - Prob. 63QAPCh. 5 - Prob. 64QAPCh. 5 - Prob. 65QAPCh. 5 - Prob. 66QAPCh. 5 - Prob. 67QAPCh. 5 - Prob. 68QAPCh. 5 - Prob. 69QAPCh. 5 - Prob. 70QAPCh. 5 - Prob. 71QAPCh. 5 - Prob. 72QAPCh. 5 - Prob. 73QAPCh. 5 - Prob. 74QAPCh. 5 - Prob. 75QAPCh. 5 - Prob. 76QAPCh. 5 - Prob. 77QAPCh. 5 - Prob. 78QAPCh. 5 - Prob. 79QAPCh. 5 - Prob. 80QAPCh. 5 - Prob. 81QAPCh. 5 - Prob. 82QAPCh. 5 - Prob. 83QAPCh. 5 - Prob. 84QAPCh. 5 - Prob. 85QAPCh. 5 - Prob. 86QAPCh. 5 - Prob. 87QAPCh. 5 - Prob. 88QAPCh. 5 - Prob. 89QAPCh. 5 - Prob. 90QAP
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY