Concept explainers
(a)
The effect of weight of the book when reduce the applying force to the book in the same spot on the wall.
Answer to Problem 5QAP
The weight of the book is not changed.
Explanation of Solution
Introduction:
The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.
So the magnitude remains constant. Therefore weight stays the same.
Conclusion:
The weight stays the same.
(b)
The effect of the normal force of the wall on the book when reduce the applying force to the book in the same spot on the wall.
Answer to Problem 5QAP
The normal force of the wall on the book decreases.
Explanation of Solution
Introduction:
The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.
When applied force is reduced the normal force decreases.
Conclusion:
The normal force of the wall on the book decreases.
(c)
The effect of the frictional force of the wall on the book when reduce the applying force to the book in the same spot on the wall.
Answer to Problem 5QAP
The frictional force of the wall on the book is not changed.
Explanation of Solution
Introduction:
The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.
So the weight of the book is constant. Therefore the frictional force of the wall on the book stays same.
Conclusion:
The frictional force of the wall on the book stays same.
(d)
The effect of the maximum static frictional force of the wall on the book when reduce the applying force to the book in the same spot on the wall.
Answer to Problem 5QAP
The maximum static frictional force of the wall on the book deceases.
Explanation of Solution
Introduction:
The book is pressed against on the wall. When we reduce the applying force to the book, the book remains in the same spot on the wall.
When F reduces R decreases. Since
Conclusion:
The maximum static frictional force of the wall on the book deceases.
Want to see more full solutions like this?
Chapter 5 Solutions
COLLEGE PHYSICS
- Solve and answer the question correctly please. Thank you!!arrow_forward་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardA spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forwardsolve and answer the problem correctly please. Thank you!!arrow_forward
- Solve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardWhen the motorcyclist is at A, he increases his speed along the vertical circular path at the rate of = (0.3t) ft/s², where t is in seconds. Take p = 360 ft. (Figure 1) Part A 60° Ρ B If he starts from rest at A, determine the magnitude of his velocity when he reaches B. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer ་ Part B ? Units If he starts from rest at A, determine the magnitude of his acceleration when he reaches B. Express your answer to three significant figures and include the appropriate units. 11 ? a = Value Unitsarrow_forward
- The car starts from rest at s = 0 and increases its speed at a₁ = 7 m/s². (Figure 1) Part A = 40 m Determine the time when the magnitude of acceleration becomes 20 m/s². Express your answer to three significant figures and include the appropriate units. ? t = Value Units Part B At what position s does this occur? Express your answer to three significant figures and include the appropriate units. s = Value Submit Request Answer ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning