(a)
Interpretation:
To determine the name of binary ionic compound BeO.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(b)
Interpretation:
To determine the name of binary ionic compound MgI2.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(c)
Interpretation:
To determine the name of binary ionic compound Na2 S.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(d)
Interpretation:
To determine the name of binary ionic compound Al2 O3.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(e)
Interpretation:
To determine the name of binary ionic compoundHCl.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(f)
Interpretation:
To determine the name of binary ionic compoundLiF.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(g)
Interpretation:
To determine the name of binary ionic compound Ag2 S.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc. and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.
(h)
Interpretation:
To determine the name of binary ionic compound CaH2.
Concept Introduction:
The naming of the ionic compound takes place in the way that the name of metal cation will remain same to that of metal while for anion the name of negative charged species end with suffix ‘ate’ for the case of elements such as P, S etc. and name of negative charged species end with suffix ‘ide’ for the case of elements such as halides.

Want to see the full answer?
Check out a sample textbook solution
Chapter 5 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- III O Organic Chemistry Using wedges and dashes in skeletal structures Draw a skeletal ("line") structure for each of the molecules below. Be sure your structures show the important difference between the molecules. key O O O O O CHON Cl jiii iiiiiiii You can drag the slider to rotate the molecules. Explanation Check Click and drag to start drawing a structure. Q Search X G ©2025 McGraw Hill LLC. All Rights Reserved. Terms of Use F 3 W C 3/5arrow_forward3. Use Kapustinskii's equation and data from Table 4.10 in your textbook to calculate lattice energies of Cu(OH)2 and CuCO3 (4 points)arrow_forward2. Copper (II) oxide crystalizes in monoclinic unit cell (included below; blue spheres 2+ represent Cu²+, red - O²-). Use Kapustinski's equation (4.5) to calculate lattice energy for CuO. You will need some data from Resource section of your textbook (p.901). (4 points) CuOarrow_forward
- What is the IUPAC name of the following compound? OH (2S, 4R)-4-chloropentan-2-ol O (2R, 4R)-4-chloropentan-2-ol O (2R, 4S)-4-chloropentan-2-ol O(2S, 4S)-4-chloropentan-2-olarrow_forwardIn the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forwardSelect the major product of the following reaction. Br Br₂, light D Br Br Br Brarrow_forward
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
- In the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward7. Magnesium is found in nature in the form of carbonates and sulfates. One of the major natural sources of zinc is zinc blende (ZnS). Use relevant concepts of acid-base theory to explain this combination of cations and anions in these minerals. (2 points)arrow_forward6. AlF3 is insoluble in liquid HF but dissolves if NaF is present. When BF3 is added to the solution, AlF3 precipitates. Write out chemical processes and explain them using the principles of Lewis acid-base theory. (6 points)arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning





