(a)
Interpretation:
Interpret the name of CaH2 is calcium hydride or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(b)
Interpretation:
Interpret the name of PbCl2 is lead (iv) chloride or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(c)
Interpretation:
Interpret the name of CrI3 is chromium (iii) iodide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(d)
Interpretation:
Interpret the name of Na2 S is disodium sulfide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
(e)
Interpretation:
Interpret the name of CuBr2 is cupric bromide or not.
Concept Introduction:
The more the element is electropositive in nature, more it releases electron and thus its oxidation state is denoted by roman numerical after the name of cation.
For example in CuCl2, Cu having + 2 state and thus the name can be written as copper (ii) chloride.
Hence, charge of element is written as number of charge denoted with roman number.
![Check Mark](/static/check-mark.png)
Trending nowThis is a popular solution!
![Blurred answer](/static/blurred-answer.jpg)
Chapter 5 Solutions
Introductory Chemistry: Foundation - Text (Looseleaf)
- The number of noncyclic isomers that have the composition C4H8Owith the O as part of an OH group, counting a pair of stereoisomers as1, is A. 8; B. 6; C. 9; D. 5; E. None of the other answers is correct.arrow_forwardNonearrow_forwardThe number of carbon skeletons that have 8 carbons, one of which istertiary is A. 7; B. More than 7; C. 6; D. 5; E. 4arrow_forward
- The azide ion is N3^-. In addition to the ionic charge, it’s three mostimportant contributing structures also have formal charges. The totalnumber of π bonds in these three contributing structures isA. 6; B. 12; C. 3; D. 9; E. None of the other answers is correct.arrow_forwardThe sum of the numerals in the name of the compoundis A. None of the other answers is correct.; B. 11;C. 6; D. 8; E. 5.arrow_forwardA compound has a six carbon ring with three double bonds. Attachedto the ring is a three carbon chain with a triple bond and a two carbonchain with two bromines attached. The number of hydrogens in a molecule of this compound is A. 10; B. 12; C. 14; D. 13; E. None of the other answers is correct.arrow_forward
- Can you help me? I can't seem to understand the handwriting for the five problems, and I want to be able to solve them and practice. If you'd like to give me steps, please do so to make it easier understand.arrow_forwardThe number of 2sp3 hybrid orbitals in the moleculeis A. 12; B. 8; C. 3; D. 11; E. None of the other answers is correct.arrow_forwardNonearrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)