In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about 42°) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N, starting with an initial speed of 2.500 m/s (due to the athlete’s preliminary motion). What is the shot’s speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) 30.00° and (b) 42.00°? ( Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from 30.00° to 42.00°?
In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about 42°) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N, starting with an initial speed of 2.500 m/s (due to the athlete’s preliminary motion). What is the shot’s speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) 30.00° and (b) 42.00°? ( Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from 30.00° to 42.00°?
In shot putting, many athletes elect to launch the shot at an angle that is smaller than the theoretical one (about 42°) at which the distance of a projected ball at the same speed and height is greatest. One reason has to do with the speed the athlete can give the shot during the acceleration phase of the throw. Assume that a 7.260 kg shot is accelerated along a straight path of length 1.650 m by a constant applied force of magnitude 380.0 N, starting with an initial speed of 2.500 m/s (due to the athlete’s preliminary motion). What is the shot’s speed at the end of the acceleration phase if the angle between the path and the horizontal is (a) 30.00° and (b) 42.00°? (Hint: Treat the motion as though it were along a ramp at the given angle.) (c) By what percent is the launch speed decreased if the athlete increases the angle from 30.00° to 42.00°?
A certain brand of freezer is advertised to use 730 kW h of energy per year.
Part A
Assuming the freezer operates for 5 hours each day, how much power does it require while operating?
Express your answer in watts.
ΜΕ ΑΣΦ
?
P
Submit
Request Answer
Part B
W
If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum
performance coefficient?
Enter your answer numerically.
K =
ΜΕ ΑΣΦ
Submit
Request Answer
Part C
What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C?
Express your answer in kilograms.
m =
Ο ΑΣΦ
kg
Describe the development of rational choice theory in sociology.
Please include
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.