Figure 5-19 gives the free-body diagram for four situations in which an object is pulled by several forces across a frictionless floor, as seen from overhead. In which situations does the acceleration
To Find
a) Which situation have x component of acceleration.
b) Which situation have y component of acceleration.
c) Direction of acceleration for each situation.
Answer to Problem 1Q
Solution
a) 2, 3 and 4.
b) 1, 3 and 4.
c) 1 – Along + y-axis, 2- Along + x-axis, 3- In 4th quadrant and 4- In 3rd quadrant.
Explanation of Solution
1) Concept:
Using the concept of net force from the Newton’s second law of motion, we can find the net force acting on the given object for given conditions.
2) Calculations:
a) According to Newton’s second law net force is product of mass and acceleration.
If we want x component acceleration there must be net force in x direction
So, For situation 1
Net force in x direction
So, there is no x component of acceleration.
For Situation 2
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 3
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 4
Net Force in x direction
As net force is 1N, x component of acceleration is present.
b)
For situation 1
Net force in y direction
So, there is y component of acceleration.
For Situation 2
Net Force in y direction
As net force is no y component of acceleration is present.
For Situation 3
Net Force in y direction
As net force is -1N, y component of acceleration is present.
For Situation 4
Net Force in y direction
As net force is -4N, y component of acceleration is present.
c) Direction of acceleration is in direction of net force.
For situation 1 there is only net force is only in +y direction so acceleration is also in +y direction.
For situation 2 there is only net force is only +x direction so acceleration is also +x direction.
For situation 3 as there is net force both in x and y direction and total net force is in fourth quadrant.
For situation 4 as there is net force both in x and y direction and total net force is in third quadrant.
Conclusion: Using the equations from the Newton’s second law of motion and vector algebra, it is possible to find the net force acting on the system.
Want to see more full solutions like this?
Chapter 5 Solutions
Fundamentals Of Physics
- The diagram shows a block of mass m = 2.50 kg resting on a plane inclined at an angle of 0 = 30° to the horizontal. The coefficient of static friction between the block and the plane is Ustatic = 0.135, and the block is stationary but just on the point of sliding up the slope. 3 X E Fi D maximum magnitude of applied force = 3 N x' mg Fi The diagram shows the four forces acting on the block: an applied force F₁ acting up the slope, the block's weight mg, the normal reaction force N and the force of static friction, Ff. In this case, the force of static friction acts down the slope, opposing the tendency of the block to move up the slope. Find the the maximum magnitude of the applied force F₁ that can be exerted if the block is to remain stationary. Specify your answer by entering a number into the empty box below. 0 N.arrow_forwarda block of mass m is held stationary on a ramp by the frictional force on it from the ramp. A force , directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?arrow_forwardA mysterious force acts on all particles along a particular line and always points towards a particular point P on the line. The magnitude of the force on a particle increases as the cube of the distance from that point, that is, F∝ r3, if the distance from the P to the position of the particle is r. It has been determined that the constant of proportionality is 0.23 N/m3, i.e. the magnitude of the force on a particle can be written as 0.23r3, when the particle is at a distance r from the force center. Find the magnitude of the potential energy, in joules, of a particle subjected to this force when the particle is at a distance 0.21 m from point P assuming the potential energy to be zero when the particle is at P. PE= ?arrow_forward
- A block of mass m1 = 3.9 kg is placed on top of a block with mass m2 = 5.4 kg. A force, F = is applied to m2, at an angle 16.1 degrees above the horizontal. If the coefficient of static friction between all moving surfaces is 0.42 and the coefficient of kinetic friction is 0.32, determine the magnitude of the minimum force that will get the blocks moving.arrow_forwardA body lies on a horizontal surface. The coefficient of friction between the body and the surface is k. Determine the angle α, at which the force acting to the body and causing its movement is the least.arrow_forwardA 15-pound box sits at rest on a horizontal surface, and there is friction between the box and the surface. One side of the surface is raised slowly to create a ramp. The friction force f opposes the direction of motion and is proportional to the normal force F exerted by the surface on the box. The proportionality constant is called the coefficient of friction, u. When the angle of the ramp. 0, reaches 25°, the box begins to slide. Find the value of u 15 pounds The value of u is (Do not round until the final answer. Then round to two decimal places as needed.)arrow_forward
- A block of mass m is sitting on a block of mass M. The bottom block is sitting on a horizontal floor. The coefficient of static friction between the blocks is μs1, and the coefficient of static friction between the bottom block and the floor is μs2. What is the minimum pull force F on the bottom block so that the blocks begin to move? Given that the coefficient of kinetic friction between the bottom block and the floor is μk, what is the maximum pull force F so that there is no slipping between the blocks?arrow_forwardThree crates with masses m, = are connected on a rough floor with a coefficient of kinetic friction Hk 12 kg and m2 = m3 = 8 kg %3D %3D =0.15. Under the influence of an external force F, the three crates move to the right with a constant speed v = 1.2 m/s. What is the net force exerted on this system along the x axis, Fnet.x=? Motion my O Cannot be determined O 0.5 N O 0.15 N O 1.2 Narrow_forwardIn the figure, a block of mass m = 5.44 kg is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude F = 10.6 N at an angle 0 = 24.0°. (a) What is the magnitude of the block's acceleration? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor? (a) Number Units (b) Number Units (c) Number Unitsarrow_forward
- A horizontal force F1=55N and a force F2=15.1N acting at an angle of 0 to the horizontal are applied to a block of mass m=2.6kg. The coefficient of kinetic friction between the block and the surface is uk=0.2. The block is moving to the right. Solve numerically for the magnitude of the normal force, FN in newtons that acts on the block if 0=30 degrees. Solve numerically for the magnitude of acceleration of the block a in m/s2 if 0=30 degrees.arrow_forwardA person pushes a box of mass m= 25 kg in a straight line along a rough floor. The applied force F has magnitude 85 N and acts downward at an angle 0 = 10° with respect to the horizontal, as shown below. The box is initially at rest at the position x, = 0 m, and it has speed v2 = 0.55 m/s at position x2= 3.50 m. a). Find the coefficient of friction between the box and the floor. b). What is the net work done? c). How much work (magnitude and sign) is done by the friction force? (This problem involves constant acceleration, Newton's Laws, and work!) marrow_forwardthe coefficient of kinetic friction between the block and inclined plane is 0.20, and angle u is 60. What are the (a) magnitude a and (b) direction (up or down the plane) of the block’s acceleration if the block is sliding down the plane? What are (c) a and (d) the direction if the block is sent sliding up the plane?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning