Fundamentals Of Physics
11th Edition
ISBN: 9781119573968
Author: David Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 5P
GO Three astronauts, propelled by jet backpacks, push and guide a 120 kg asteroid toward a processing dock, exerting the forces shown in Fig. 5-29, with F1 = 32 N, F2 = 55 N, F3 = 41 N, θ1 = 30°, and θ3 = 60°. What is the asteroid’s acceleration (a) in unit-vector notation and as (b) a magnitude and (c) a direction relative to the positive direction of the x axis?
Figure 5-29 Problem 5.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The velocity v of a particle moving in the xy plane is given by = ( 5.50 r- 5.00 r)i + 9.00 j,with V in meters per second
and t(> 0) in seconds. At t = 1.40 s and in unit-vector notation, what are (a) the x component and (b) the y component of the
acceleration? (c) When (if ever) is the acceleration zero? (d) At what positive time does the speed equal 10.0 m/s?
(a) Number
i Unit
(b) Number
I Unit
(c) Number
i
Unit
(d)
Number
Unit
The horizontal coordinates of a Frisbee in a strong wind are given by x = -12t + 4t^2 and y = 10t - 3t^2, where x and y are in meters, and t is in seconds.(a) What is the acceleration of the Frisbee? Give a magnitude and a direction,measuring angles from the positive x direction.(b) What is the magnitude of the velocity at t = 2.0 s, accurate to the nearest m/s?
In 2.10 h, a balloon drifts 16.9 km north, 5.16 km east, and 3.23 km upward from its release point on the ground. Find (a) the magnitude
of its average velocity and (b) the angle its average velocity makes with the horizontal.
(a) Number 8.55
(b) Number
79.63
Units
Units
km/h
*(degrees)
Chapter 5 Solutions
Fundamentals Of Physics
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - Prob. 8PCh. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
47. A 250.0-mL buffer solution is 0.250 M in acetic acid and 0.250 M in sodium acetate.
a. What is the initial ...
Chemistry: A Molecular Approach (4th Edition)
The conclusion is given for two substances from given heat of fusion of water and ethanol. Concept introduction...
Living By Chemistry: First Edition Textbook
Choose the best answer to each of the following. Explain your reasoning. Two stars that are in the same constel...
Cosmic Perspective Fundamentals
45. Calculate the mass of nitrogen dissolved at room temperature in an 80.0-L home aquarium. Assume a total pre...
Chemistry: Structure and Properties (2nd Edition)
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
WHAT IF? Is allopatric speciation more likely to occur on an island close to a mainland or on a more isolated ...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The position r of a particle moving in an xy plane is given by ř seconds. In unit-vector notation, calculate (a) 7, (b) V , and (c) a for t = 3.00 s. (d) What is the angle between the positive direction of the x axis and a line tangent to the particle's path at t = 3.00 s? Give your answer in the range of (-180°; 180°). (4.00r3 – 1.00t)î + (5.00 – 1.00r4)j with 7 in meters and t in (a) Number i i Units (b) Number ît i Units i (c) Number i i Units (d) Number i Unitsarrow_forwardI need help with this HW problemarrow_forwardIn an attempt to escape his island, Gilligan builds a raft and sets to sea. The wind shifts a great deal during the day, and he is blown along the following straight lines: 2.50 km 45.0º north of west; then 4.70 km 60.0º south of east; then 1.30km 25.0º south of west; then 5.10 km straight east; then 1.70km 5.00º east of north; then 7.20 km 55.0º south of west; and finally 2.80 km10.0º north of east. What is his final position relative to the island?arrow_forward
- A train at a constant 56.0 km/h moves east for 29.0 min, then in a direction 47.0° east of due north for 21.0 min, and then west for 39.0 min. What are the (a) magnitude and (b) angle (relative to east) of its average velocity during this trip? (a) Number 9.499 (b) Number i 18.09 Units Units km/h ° (degrees)arrow_forwardAn object is released from rest at x = 0 on a frictionless inclined plane that makes an angle theta = 30o with the horizontal. Taking +x to be down the incline and parallel to it, what is the object’s x-coordinate after 3 seconds?arrow_forwardA ball swings counterclockwise in a vertical circle at the end of a rope 1.50 m long. When the ball is 36.9° past the lowest point on its way up, its total acceleration is (-22.5 î + 20.2 ĵ ) m/s2. For that instant, (a) sketch a vectordiagram showing the components of its acceleration, (b) determine the magnitude of its radial acceleration, and (c) determine the speed and velocity of the ball.arrow_forward
- A particle which moves with the curvilinear motion has coordinates in millimeters which vary with the time t in seconds according to x = 2t^2 - 4t and y = 3t^2 - (t^3)/3. Find the magnitudes of the velocity v and acceleration a and the angles the vectors make with the x-axis when t = 2 s.arrow_forwardA 121 kg crate is sitting at the top of a ramp, which is inclined at an angle of 18 degrees with respect to the horizontal. The crate is a height 0.51 m from the ground, measured vertically from the ground to the crate. Someone gives the crate a quick shove to get it moving, after which it slides down the ramp without any further assistance. The coefficient of kinetic friction between the crate and the ramp is Hs = 0.23. How much time (in seconds) does it take for the crate to get to the %3D base of the ramp?arrow_forwardGiven that vectors T = + 2.00x + 6.00y – 4.00z and D = 2.00x – 3.00y – 4.00z Calculate the magnitude of vector Tarrow_forward
- A particle moves in the xy plane, starting from the origin at t = 0 with an initial velocity having an x component of 20 m/s and a y component of 215 m/s. The particle experiences an acceleration in the x direction, given by ax =4.0 m/s2.(A) Determine the total velocity vector at any later time. (B) Calculate the velocity and speed of the particle at t = 5.0 s and the angle the velocity vector makes with the x axis. (C) Determine the x and y coordinates of the particle at any time t and its position vector at this time.arrow_forward7. A force F1 of magnitude 6.00 units acts on an object at the origin in a direction 0 = 30.0° above the positive a axis (Fig. P3.7). A second force F, of magnitude 5.00 units acts on the object in the direction of the positive y axis. Find graphically the magnitude and direction of the resultant force Figure P3.7 F,arrow_forwardA cannon ball is fired with an initial speed of 123 m/s at angle of 60 degrees from the horizontal. Express the initial velocity as a linear combination of its unit vector components. Vo - ( mis) 7 + m/s) ? At the maximum height, the speed of the cannon ball is v= m/s and the magnitude of its acceleration is a- m/s?. The time needed to reach maximum height is t- S. The maximum height reached by the cannon ball is H= m.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY