Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 61P
In a loop-the-loop roller coaster, show that a car moving too slowly would leave the track at an angle ϕ given by cos ϕ = v2/rg, where ϕ is the angle made by a vertical line through the center of the circular track and a line from the center to the point where the car leaves the track.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 2:
In baseball the pitcher will throw baseballs horizontally and to account for gravity, the
pitcher will stand upon a raised mound. Take the pitcher's release point to be 1.2m above
the ground and they will hit a spot 0.7m above the ground at a distance 20m away.
a)
Draw ST vs t, sy VS t, Uz VS t,, Vy vs t, a vs t,, and ay vs t, graphs of
the baseball's motion
b)
from Kinematic Equations on the first page
Prove that the velocity needed is =
9(Asz)²
V24sy
symbolically by starting
c)
If the pitcher was playing on Mars (g = 3.7m/s, negligible air resistance)
how fast would they have to pitch?
You can use the formula for centripetal acceleration OR You have to calculate the average acceleration directly from the definition, a = delta v / delta t. You have to first get a_x by using the velocity's initial and final x components, do a_y from the y components, and then use the Pythagorean formula to get the magnitude of the acceleration vector.
While traversing a two-lane highway, the driver observes a girl, 60 m ahead, at the edge of the traveled way of the opposite direction about to cross the road. The lane width of the traveled way is 3.5 m. The vehicle is 2 m wide and 3 m long. The speed of the vehicle is 75 kph and the walking speed of the girl is 1.5 m/s. The vehicle is traveling along the centerline of the traveled way. Asssume that the driver's PR time is 0.8 sec and the coefficient of friction between the vehicle tires and the pavement is 0.4.
a. If the roadway is level, will the girl be able to corss the road safely?
b. If the roadway has down grade of 0.5%, what is the coefficient of friction between the tires and the pavement required so that the driver won't hit the girl?
c. Using the original coefficient of friction between vehicle tires and the pavement, at what roadway grade is the vehicle traversing such that the vehicle was just able to stop without hitting the girl?
Chapter 5 Solutions
Essential University Physics (3rd Edition)
Ch. 5.1 - A roofers toolbox rests on an essentially How does...Ch. 5.2 - In the figure below weve replaced one of the hands...Ch. 5.3 - You whirl a bucket of water around in a vertical...Ch. 5.4 - The figure shows a logging vehicle pulling a...Ch. 5 - Compare the net force on a heavy trunk when its...Ch. 5 - The force of static friction acts only between...Ch. 5 - A jet plane flies at constant speed in a vertical...Ch. 5 - In cross-country skiing, skis should easily glide...Ch. 5 - Why do airplanes bank when turning?Ch. 5 - Why is it easier for a child to stand nearer the...
Ch. 5 - Gravity pulls a satellite toward Earths center. So...Ch. 5 - Explain why a car with ABS brakes can have a...Ch. 5 - A fishing line has a 20-lb breaking strength. Is...Ch. 5 - Two blocks rest on slopes of unequal angles,...Ch. 5 - Youre on a plane undergoing a banked turn, so...Ch. 5 - A backcountry skier weighing 700 N skis down a...Ch. 5 - Two forces, both in the x-y plane, act on a...Ch. 5 - Two forces act on a 3.1-kg mass that undergoes...Ch. 5 - At what angle should you tilt an air table to...Ch. 5 - A skier starts from rest at the top of a 24 slope...Ch. 5 - A tow truck is connected to a 1400-kg car by a...Ch. 5 - Studies of gymnasts show that their high rate of...Ch. 5 - Find the minimum slope angle for which the skier...Ch. 5 - Section 5.2 Multiple Objects Your 12-kg baby...Ch. 5 - If the left-hand slope in Fig. 5.30 makes a 60...Ch. 5 - Suppose the angles shown in Fig. 5.30 are 60 and...Ch. 5 - Two unfortunate climbers, roped together, are...Ch. 5 - Suppose the Moon were held in its orbit not by...Ch. 5 - Show that the force needed to keep a mass m in a...Ch. 5 - A 940-g rock is whirled in a horizontal circle at...Ch. 5 - Youre investigating a subway accident in which a...Ch. 5 - A tetherball on a 1.55-m rope is struck so that it...Ch. 5 - An airplane goes into a turn 3.6 km in radius. If...Ch. 5 - Movers slide a 73-kg file cabinet along a floor...Ch. 5 - A hockey puck is given an initial speed of 14 m/s....Ch. 5 - Starting from rest, a skier slides 100 m down a 28...Ch. 5 - A car moving at 40 km/h negotiates a 130-m-radius...Ch. 5 - Prob. 34PCh. 5 - A block is launched with initial speed 2.2 m/s up...Ch. 5 - In the process of mitosis (cell division), two...Ch. 5 - A 14.6-kg monkey hangs from the middle of a...Ch. 5 - A camper hangs a 26-kg pack between two trees...Ch. 5 - A mass m, undergoes circular motion of radius R on...Ch. 5 - Patients with severe leg breaks arc often placed...Ch. 5 - Riders on the Great American Revolution...Ch. 5 - A 45-kg skater rounds a 5.0-m-radius turn at 6.3...Ch. 5 - When a piano turns, it banks as shown in Fig. 5.35...Ch. 5 - You whirl a bucket of water in a vertical circle...Ch. 5 - A child sleds down an 8.5 slope at constant speed....Ch. 5 - The handle of a 22-kg lawnmower makes a 35 angle...Ch. 5 - Repeal Example 5.4, now assuming that the...Ch. 5 - A bat crashes into the vertical front of an...Ch. 5 - The coefficient of static friction between steel...Ch. 5 - A bug crawls outward from the center of a CD...Ch. 5 - A 310-g paperback book rests on a 1.2-kg textbook....Ch. 5 - Children sled down a41-m-long hill inclined at 25....Ch. 5 - In a typical front-wheel-drive car, 70% of the...Ch. 5 - A police officer investigating an accident...Ch. 5 - A slide inclined at 35 takes bathers into a...Ch. 5 - You try to move a heavy trunk, pushing down and...Ch. 5 - A block is shoved up a 22 slope with an initial...Ch. 5 - At the end of a factory production line, boxes...Ch. 5 - Youre in traffic court, arguing against a speeding...Ch. 5 - A space station is in the shape of a hollow ring,...Ch. 5 - In a loop-the-loop roller coaster, show that a car...Ch. 5 - Find an expression for the minimum frictional...Ch. 5 - An astronaut is training in an earthbound...Ch. 5 - You stand on a spring scale at the north pole and...Ch. 5 - Driving in thick fog on a horizontal road, you...Ch. 5 - A block is projected up an incline at angle . It...Ch. 5 - A 2.1-kg mass is connected to a spring with spring...Ch. 5 - Take k = 0.75 in Example 5.11, and plot the...Ch. 5 - Repeat the preceding problem for an arbitrary...Ch. 5 - Moving through a liquid, an object of mass m...Ch. 5 - Suppose the object in Problem 70 had an initial...Ch. 5 - A block is launched with speed v0 up a slope...Ch. 5 - A florist asks you to make a window display with...Ch. 5 - Youre al the state fair. A sideshow barker claims...Ch. 5 - One of the limiting factors in high-performance...Ch. 5 - Figure 5.39 shows an apparatus used to verify...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the Hertzsprung–Russell diagram? How does a star in the upper left section differ from one in the lower...
Life in the Universe (4th Edition)
Using the definitions in Eqs. 1.1 and 1.4, and appropriate diagrams, show that the dot product and cross produc...
Introduction to Electrodynamics
How does the total amount of energy coming from the Sun compare to the total amount of energy leaving Earth to ...
Lecture- Tutorials for Introductory Astronomy
What is the critical angle for light propagating in glass with n = 1.52 when the glass is immersed in (a) water...
Essential University Physics: Volume 2 (3rd Edition)
18. (I) How much work must be done to stop a 925-kg car travelling at 95 km/h?
Physics: Principles with Applications
Q18.2 In the ideal-gas equation, could an equivalent Celsius temperature be used instead of the Kelvin one if a...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Olympus Mons on Mars is the largest volcano in the solar system, at a height of 25 km and with a radius of 312 km. If you are standing on the summit, with what Initial velocity would you have to fire a projectile from a cannon horizontally to clear the volcano and land on the surface of Mars? Note that Mars has an acceleration of gravity of 3.7m/s2 .arrow_forwardA hiker walks from (x1, y1) = (4.00 km. 3.00 km) to (x2, y2) = (3.00 km, 6.00 km), (a) What distance has the traveled? (b) The hiker desires to return to his starting point. In what direction should he go? (Give the angle with respect to due cast.) (See Sections 3.2 and 3.3.)arrow_forwardWhat is the direction of the acceleration vector of a person on the spinning Earth if the person is (a) at the equator? (b) at some other latitude? (c) at the poles?arrow_forward
- In an assembly operation illustrated in Figure P3.30. a robot moves an object first straight upward and then also to the east, around an arc forming one-quarter of a circle of radius 4.80 cm that lies in an eastwest vertical plane. The robot then moves the object upward and to the north, through one-quarter of a circle of radius 3.70 cm that lies in a northsouth vertical plane. Find (a) the magnitude of the total displacement of the object and (b) the angle the total displacement makes with the vertical. Figure P3.30arrow_forwardFigure P3.31 represents the total acceleration of a particle moving clockwise in a circle of radius 2.50 m at a certain instant of time. For that instant, find (a) the radial acceleration of the particle, (b) the speed of the particle, and (c) its tangential acceleration.arrow_forwardA stone is thrown at a cliff with a height of h. If the stone is thrown with an initial speed of 42 m/s at an angle θ=60° and hits the cliff at A 5.5 seconds later, determine the speed of the stone when it hits A. Use g = 10 m/s/s.arrow_forward
- In my homework, I am asked to derive an equation for V0. The homework question is as follows: A howitzer fires a shell with a velocity of v0 at an angle Θ above the horizontal. The howitzer is on a plateau and the shell lands down in the plain below, a vertical distance d below the plateau and a horizontal distance L from where the howitzer is. Derive an expression for the magnitude of the initial velocity, V0, as a function of d, L, g, and Θ. Any help would be appreciated as I have worked on this problem for quite a while and I am not making progress.arrow_forward(a) What is the magnitude of the centripetal acceleration of an object on Earth’s equator due to the rotation of Earth? (b) What would Earth’s rotation period have to be for objects on the equator to have a centripetal acceleration of magnitude 9.8 m/s2?arrow_forwardIn an attempt to escape his island, Gilligan builds a raft and sets to sea. The wind shifts a great deal during the day, and he is blown along the following straight lines: 2.50 km 45.0 north of west; then 4.70 km 60.0 south of east; then 1.30 km 25.0 south of west; then 5.10 km straight east; then 1.70 km 5.00 east of north; then 7.20km 55.0 south of west; and finally 2.80 km 10.0 north of east. What is his final position relative to the island?arrow_forward
- I know Bartleby policy, can you still answer all the questions.arrow_forwardThe length of the arc is 250 meters, and the time to turn is 37 seconds. Calculate the x-component of the acceleration (in m/s2) at point B, where the angle is 69°. 3. A car initially traveling v eastward turns north by traveling in a circular path at uniform speed as shown in Figure P6.3. The length of the arc ABC is 235 m, and the B) y Calculate the average speed in m/s. The numbers: • Length of the arc: 219 meters • Time to turn: 49 seconds 35.0° C В car completes the turn in 36.0 s. Now calculate the y-component of the average acceleration. The book itself is 6) unclear whether what's asked for is the average of the vector, the magnitude of A the vector average, or the average of the magnitude. But the answer at the back of the book indicates the vector. Figure P6.3 • Length of the arc: 227 meters • Time to turn: 46 secondsarrow_forwardAn apple grows on a tree located on a 42° hill with respect to the horizontal. The apple falls, hitting the ground with a downward velocity at 6.87 m/s. The apple's impact velocity can be resolved into components parallel and perpendicular to the hill. Find the magnitude of the parallel component, varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY