Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 27E
You’re investigating a subway accident in which a train derailed while rounding an unbanked curve of radius 150 m, and you’re asked to estimate whether the train exceeded the 35-km/h speed limit for this curve. You interview a passenger who had been standing and holding onto a strap; she noticed that an unused strap was hanging at about a 15° angle to the vertical just before the accident. What do you conclude?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Please consider this question: A train derailed while rounding an unbanked curve of radius 150 meters. A passenger on the train during the accident noticed that an unused strap was hanging at about a 15 degree angle to the vertical just before the derailment. How fast was the train moving at the time of the derailment? This is based on problem 27 of chapter 5 of Wolfson's Essential University Physics (3rd edition). The book itself has the answer 58 km/hour, which seems wrong to me. I keep coming up with something more like 71 km/hour. Can you make any sense of that?
A small object of mass 0.500 kg is attached by a 0.580 m-long cord to a pin set into the surface of a frictionless table top. The object moves in a circle on the horizontal surface with a speed of 7.23 m/s.
(a) What is the magnitude of the radial acceleration of the object?
(b)What is the tension in the cord?
A car is driving along a level and unbanked circular track of diameter d=0.54km at a constant speed of v=21.2m/s.
Write an expression for the magnitude of the acceleration of the car in terms of the given parameters.What is the magnitude, in meters per squared second, of the acceleration of the car?Write an expression for the minimum coefficient of friction between the car's tires and the road that is required in order to keep the car going in a circle in terms of the given parameters.What is the value of the minimum coefficient of friction between the car's tires and the road that is required in order to keep the car going in a circle?
Chapter 5 Solutions
Essential University Physics (3rd Edition)
Ch. 5.1 - A roofers toolbox rests on an essentially How does...Ch. 5.2 - In the figure below weve replaced one of the hands...Ch. 5.3 - You whirl a bucket of water around in a vertical...Ch. 5.4 - The figure shows a logging vehicle pulling a...Ch. 5 - Compare the net force on a heavy trunk when its...Ch. 5 - The force of static friction acts only between...Ch. 5 - A jet plane flies at constant speed in a vertical...Ch. 5 - In cross-country skiing, skis should easily glide...Ch. 5 - Why do airplanes bank when turning?Ch. 5 - Why is it easier for a child to stand nearer the...
Ch. 5 - Gravity pulls a satellite toward Earths center. So...Ch. 5 - Explain why a car with ABS brakes can have a...Ch. 5 - A fishing line has a 20-lb breaking strength. Is...Ch. 5 - Two blocks rest on slopes of unequal angles,...Ch. 5 - Youre on a plane undergoing a banked turn, so...Ch. 5 - A backcountry skier weighing 700 N skis down a...Ch. 5 - Two forces, both in the x-y plane, act on a...Ch. 5 - Two forces act on a 3.1-kg mass that undergoes...Ch. 5 - At what angle should you tilt an air table to...Ch. 5 - A skier starts from rest at the top of a 24 slope...Ch. 5 - A tow truck is connected to a 1400-kg car by a...Ch. 5 - Studies of gymnasts show that their high rate of...Ch. 5 - Find the minimum slope angle for which the skier...Ch. 5 - Section 5.2 Multiple Objects Your 12-kg baby...Ch. 5 - If the left-hand slope in Fig. 5.30 makes a 60...Ch. 5 - Suppose the angles shown in Fig. 5.30 are 60 and...Ch. 5 - Two unfortunate climbers, roped together, are...Ch. 5 - Suppose the Moon were held in its orbit not by...Ch. 5 - Show that the force needed to keep a mass m in a...Ch. 5 - A 940-g rock is whirled in a horizontal circle at...Ch. 5 - Youre investigating a subway accident in which a...Ch. 5 - A tetherball on a 1.55-m rope is struck so that it...Ch. 5 - An airplane goes into a turn 3.6 km in radius. If...Ch. 5 - Movers slide a 73-kg file cabinet along a floor...Ch. 5 - A hockey puck is given an initial speed of 14 m/s....Ch. 5 - Starting from rest, a skier slides 100 m down a 28...Ch. 5 - A car moving at 40 km/h negotiates a 130-m-radius...Ch. 5 - Prob. 34PCh. 5 - A block is launched with initial speed 2.2 m/s up...Ch. 5 - In the process of mitosis (cell division), two...Ch. 5 - A 14.6-kg monkey hangs from the middle of a...Ch. 5 - A camper hangs a 26-kg pack between two trees...Ch. 5 - A mass m, undergoes circular motion of radius R on...Ch. 5 - Patients with severe leg breaks arc often placed...Ch. 5 - Riders on the Great American Revolution...Ch. 5 - A 45-kg skater rounds a 5.0-m-radius turn at 6.3...Ch. 5 - When a piano turns, it banks as shown in Fig. 5.35...Ch. 5 - You whirl a bucket of water in a vertical circle...Ch. 5 - A child sleds down an 8.5 slope at constant speed....Ch. 5 - The handle of a 22-kg lawnmower makes a 35 angle...Ch. 5 - Repeal Example 5.4, now assuming that the...Ch. 5 - A bat crashes into the vertical front of an...Ch. 5 - The coefficient of static friction between steel...Ch. 5 - A bug crawls outward from the center of a CD...Ch. 5 - A 310-g paperback book rests on a 1.2-kg textbook....Ch. 5 - Children sled down a41-m-long hill inclined at 25....Ch. 5 - In a typical front-wheel-drive car, 70% of the...Ch. 5 - A police officer investigating an accident...Ch. 5 - A slide inclined at 35 takes bathers into a...Ch. 5 - You try to move a heavy trunk, pushing down and...Ch. 5 - A block is shoved up a 22 slope with an initial...Ch. 5 - At the end of a factory production line, boxes...Ch. 5 - Youre in traffic court, arguing against a speeding...Ch. 5 - A space station is in the shape of a hollow ring,...Ch. 5 - In a loop-the-loop roller coaster, show that a car...Ch. 5 - Find an expression for the minimum frictional...Ch. 5 - An astronaut is training in an earthbound...Ch. 5 - You stand on a spring scale at the north pole and...Ch. 5 - Driving in thick fog on a horizontal road, you...Ch. 5 - A block is projected up an incline at angle . It...Ch. 5 - A 2.1-kg mass is connected to a spring with spring...Ch. 5 - Take k = 0.75 in Example 5.11, and plot the...Ch. 5 - Repeat the preceding problem for an arbitrary...Ch. 5 - Moving through a liquid, an object of mass m...Ch. 5 - Suppose the object in Problem 70 had an initial...Ch. 5 - A block is launched with speed v0 up a slope...Ch. 5 - A florist asks you to make a window display with...Ch. 5 - Youre al the state fair. A sideshow barker claims...Ch. 5 - One of the limiting factors in high-performance...Ch. 5 - Figure 5.39 shows an apparatus used to verify...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
What do we mean by an “RNA world,” and why do scientists suggest that such a world preceded the current “DNA wo...
Life in the Universe (4th Edition)
32. When a sound wave travels directly toward a hard wall, the incoming and reflected waves can combine to prod...
College Physics: A Strategic Approach (3rd Edition)
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
11.3 A uniform rod is 2.00 m long and has mass 1.80 kg. A 2.40-kg clamp is attached to the rod. How far should ...
University Physics (14th Edition)
Explain all answer clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desig...
The Cosmic Perspective Fundamentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A car is driving along a circular track with diameter d = 0.59km at a constant speed of v = 21.2 m/s. Write an expression and find the value for the minimum coefficient of friction between the cars tires and road required in order to keep the car going in a circle in terms of the given parameters.arrow_forwardWhat is the smallest radius of an unbanked (flat) track around which a bicyclist can travel if her speed is 29 km/h and the ms between tires and track is 0.32?arrow_forwardA curve in a road forms part of a horizontal circle. As a car goes around it at constant speed 14.0 m/s, the total horizontal force on the driver has magnitude 130 N. What is the total horizontal force on the driver if the speed on the same curve is 18.0 m/s instead?arrow_forward
- Engineers who design roads typically “bank” (incline) curves in such a way that a car traveling at the recommended speed does not have to rely on friction between its tires and the road in order to round the curve. Suppose the radius of curvature of a road segment is 55 m, and the recommended speed is 45 km/hr. At what angle should the curve be banked?arrow_forwardBob is driving with constant speed in a curved path with radius r = 50 m. If the coefficient of static friction between his tires and the road is 0.5, what is the maximum speed he can have without skidding?arrow_forwardWith what speed (in mi/hr) must you drive your car across the crest of a hill of radius 37.1-m in order to feel weightless (1.00 m/s = 2.24 mi/hr)?arrow_forward
- It is well known that runners run more slowly around a curved track than a straight one. One hypothesis to explain this is that the total force from the track on a runner’s feet— the magnitude of the vector sum of the normal force (that has average value mg to counteract gravity) and the inward-directed friction force that causes the runner’s centripetal acceleration— is greater when running around a curve than on a straight track. Runners compensate for this greater force by increasing the time their feet are in contact with the ground, which slows them down. For a sprinter running at 10 m/s around a curved track of radius 20 m, how much greater (as a percentage) is the average total force on their feet compared to when they are running in a straight line?arrow_forwardDuring their physics field trip to the amusement park, Tyler and Maria took a rider on the Whirligig. The Whirligig ride consists of long swings which spin in a circle at relatively high speeds. As part of their lab, Tyler and Maria estimate that the riders travel through a circle with a radius of 6.5 m and make one turn every 5.8 seconds. Determine the speed of the riders on the Whirligig.arrow_forwardIn a recent study of how mice negotiate turns, the mice ran around a circular 90° turn on a track with a radius of 0.15 m. The maximum speed measured for a mouse (mass = 18.5 g) running around this turn was 1.29 m/s. What is the minimum coefficient of friction between the track and the mouse’s feet that would allow a turn at this speed?arrow_forward
- A car of mass 622 kg is driving around a curve with a circular arc of radius 20 m. If the car drives at a speed of 12 m/s, what is the minimum value of the coefficient of friction between the car's tires and the road that will keep the car on the road?arrow_forwardBiologists have studied the running ability of the northern quoll, a marsupial indigenous to Australia. In one set of experiments, they studied the maximum speed that quolls could run around a curved path without slipping. One quoll was running at 2.8 m/s around a curve with a radius of 1.2 m when it started to slip. What was the coefficient of static friction between the quoll’s feet and the ground in this trial?arrow_forwardThe length of the arc is 250 meters, and the time to turn is 37 seconds. Calculate the x-component of the acceleration (in m/s2) at point B, where the angle is 69°. 3. A car initially traveling v eastward turns north by traveling in a circular path at uniform speed as shown in Figure P6.3. The length of the arc ABC is 235 m, and the B) y Calculate the average speed in m/s. The numbers: • Length of the arc: 219 meters • Time to turn: 49 seconds 35.0° C В car completes the turn in 36.0 s. Now calculate the y-component of the average acceleration. The book itself is 6) unclear whether what's asked for is the average of the vector, the magnitude of A the vector average, or the average of the magnitude. But the answer at the back of the book indicates the vector. Figure P6.3 • Length of the arc: 227 meters • Time to turn: 46 secondsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY