Essential University Physics (3rd Edition)
3rd Edition
ISBN: 9780134202709
Author: Richard Wolfson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 41P
Riders on the “Great American Revolution” loop-the-loop roller coaster of Example 5.7 wear seatbelts as the roller coaster negotiates its 6.3-m-radius loop at 9.7 m/s. At the top of the loop, what are the magnitude and direction of the force exerted on a 60-kg rider (a) by the roller-coaster seat and (b) by the seatbelt? (c) What would happen if the rider unbuckled at this point?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Flying Circus of Physics
A student of weight 625 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude of the
normal force FN on the student from the seat is 586 N. (a) What is the magnitude of FN at the lowest point? If the wheel's speed is
doubled, what is the magnitude FN at the (b) highest and (c) lowest point?
(a) Number
(b) Number
(c) Number
I
M.
Units
Units
Units
Fast
Cliff divers in acapulco dive into the ocean from h=35m high cliffs. The divers are moving 26 m/s downward in the vertical direction. They travel in a straight line over a distance of 4m through the water before momentarily coming to a rest. Assuming the diver jumps with an initial horizontal velocity of 3.5 m/s. What is the magnitude of the net force on a 70 kg diver?
Chapter 5 Solutions
Essential University Physics (3rd Edition)
Ch. 5.1 - A roofers toolbox rests on an essentially How does...Ch. 5.2 - In the figure below weve replaced one of the hands...Ch. 5.3 - You whirl a bucket of water around in a vertical...Ch. 5.4 - The figure shows a logging vehicle pulling a...Ch. 5 - Compare the net force on a heavy trunk when its...Ch. 5 - The force of static friction acts only between...Ch. 5 - A jet plane flies at constant speed in a vertical...Ch. 5 - In cross-country skiing, skis should easily glide...Ch. 5 - Why do airplanes bank when turning?Ch. 5 - Why is it easier for a child to stand nearer the...
Ch. 5 - Gravity pulls a satellite toward Earths center. So...Ch. 5 - Explain why a car with ABS brakes can have a...Ch. 5 - A fishing line has a 20-lb breaking strength. Is...Ch. 5 - Two blocks rest on slopes of unequal angles,...Ch. 5 - Youre on a plane undergoing a banked turn, so...Ch. 5 - A backcountry skier weighing 700 N skis down a...Ch. 5 - Two forces, both in the x-y plane, act on a...Ch. 5 - Two forces act on a 3.1-kg mass that undergoes...Ch. 5 - At what angle should you tilt an air table to...Ch. 5 - A skier starts from rest at the top of a 24 slope...Ch. 5 - A tow truck is connected to a 1400-kg car by a...Ch. 5 - Studies of gymnasts show that their high rate of...Ch. 5 - Find the minimum slope angle for which the skier...Ch. 5 - Section 5.2 Multiple Objects Your 12-kg baby...Ch. 5 - If the left-hand slope in Fig. 5.30 makes a 60...Ch. 5 - Suppose the angles shown in Fig. 5.30 are 60 and...Ch. 5 - Two unfortunate climbers, roped together, are...Ch. 5 - Suppose the Moon were held in its orbit not by...Ch. 5 - Show that the force needed to keep a mass m in a...Ch. 5 - A 940-g rock is whirled in a horizontal circle at...Ch. 5 - Youre investigating a subway accident in which a...Ch. 5 - A tetherball on a 1.55-m rope is struck so that it...Ch. 5 - An airplane goes into a turn 3.6 km in radius. If...Ch. 5 - Movers slide a 73-kg file cabinet along a floor...Ch. 5 - A hockey puck is given an initial speed of 14 m/s....Ch. 5 - Starting from rest, a skier slides 100 m down a 28...Ch. 5 - A car moving at 40 km/h negotiates a 130-m-radius...Ch. 5 - Prob. 34PCh. 5 - A block is launched with initial speed 2.2 m/s up...Ch. 5 - In the process of mitosis (cell division), two...Ch. 5 - A 14.6-kg monkey hangs from the middle of a...Ch. 5 - A camper hangs a 26-kg pack between two trees...Ch. 5 - A mass m, undergoes circular motion of radius R on...Ch. 5 - Patients with severe leg breaks arc often placed...Ch. 5 - Riders on the Great American Revolution...Ch. 5 - A 45-kg skater rounds a 5.0-m-radius turn at 6.3...Ch. 5 - When a piano turns, it banks as shown in Fig. 5.35...Ch. 5 - You whirl a bucket of water in a vertical circle...Ch. 5 - A child sleds down an 8.5 slope at constant speed....Ch. 5 - The handle of a 22-kg lawnmower makes a 35 angle...Ch. 5 - Repeal Example 5.4, now assuming that the...Ch. 5 - A bat crashes into the vertical front of an...Ch. 5 - The coefficient of static friction between steel...Ch. 5 - A bug crawls outward from the center of a CD...Ch. 5 - A 310-g paperback book rests on a 1.2-kg textbook....Ch. 5 - Children sled down a41-m-long hill inclined at 25....Ch. 5 - In a typical front-wheel-drive car, 70% of the...Ch. 5 - A police officer investigating an accident...Ch. 5 - A slide inclined at 35 takes bathers into a...Ch. 5 - You try to move a heavy trunk, pushing down and...Ch. 5 - A block is shoved up a 22 slope with an initial...Ch. 5 - At the end of a factory production line, boxes...Ch. 5 - Youre in traffic court, arguing against a speeding...Ch. 5 - A space station is in the shape of a hollow ring,...Ch. 5 - In a loop-the-loop roller coaster, show that a car...Ch. 5 - Find an expression for the minimum frictional...Ch. 5 - An astronaut is training in an earthbound...Ch. 5 - You stand on a spring scale at the north pole and...Ch. 5 - Driving in thick fog on a horizontal road, you...Ch. 5 - A block is projected up an incline at angle . It...Ch. 5 - A 2.1-kg mass is connected to a spring with spring...Ch. 5 - Take k = 0.75 in Example 5.11, and plot the...Ch. 5 - Repeat the preceding problem for an arbitrary...Ch. 5 - Moving through a liquid, an object of mass m...Ch. 5 - Suppose the object in Problem 70 had an initial...Ch. 5 - A block is launched with speed v0 up a slope...Ch. 5 - A florist asks you to make a window display with...Ch. 5 - Youre al the state fair. A sideshow barker claims...Ch. 5 - One of the limiting factors in high-performance...Ch. 5 - Figure 5.39 shows an apparatus used to verify...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...Ch. 5 - A spiral is an ice-skating position in which the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
21. What are the strength and direction of the electric field 1.0 mm from (a) a proton and (b) an electron?
College Physics: A Strategic Approach (4th Edition)
A second experiment is performed in which glider D is fixed in place. Glider C is launched toward glider D with...
Tutorials in Introductory Physics
10. Polarization occurs for waves that are
transverse.
longitudinal.
either of these
neither of these
Conceptual Physical Science (6th Edition)
5. If a wheel 212 cm in diameter takes 2.25 s for each revolution, find its (a) period and (b) angular speed in...
College Physics (10th Edition)
In Fig. 25.35 the 2.0-F capacitor is charged to 150 V, while the 1.0-F capacitor is initially uncharged. Switch...
Essential University Physics: Volume 2 (3rd Edition)
How do martian seasons differ from Earth seasons? Describe major seasonal changes that occur on Mars.
Life in the Universe (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Give reasons for the answers to each of the following questions: (a) Clan a normal force be horizontal? (b) Can a normal force be directed vertically downward? (c) Consider a tennis ball in contact with a stationary floor and with nothing else. Can the normal force be different in magnitude from the gravitational force exerted on the ball? (d) Can the force exerted by the floor on the hall be different in magnitude from the force the ball exerts on the floor?arrow_forwardA 75.0-g arrow, fired at a speed of 110 m/s to the left, impacts a tree, which it penetrates to a depth of 12.5 cm before coming to a stop. Assuming the force of friction exerted by the tree is constant, what are the magnitude and direction of the friction force acting on the arrow?arrow_forwardThe starship Enterprise has its tractor beam locked onto some valuable debris and is trying to pull it toward the ship. A Klingon battle cruiser and a Romulan warbird are also trying to recover the item by pulling the debris with their tractor beams as shown in Figure P5.25. a. Given the following magnitudes of the tractor beam forces, find the net force experienced by the debris: FEnt = 7.59 106 N, FRom = 2.53 106 N, and FKling = 8.97 105 N. b. If the debris has a mass of 2549 kg, what is the net acceleration of the debris? FIGURE P5.25arrow_forward
- An automobile driver traveling down an 8% grade slams on his brakes and skids 30 m before hitting a parked car. A lawyer hires an expert who measures the coefficient of kinetic friction between the tires and road to be k = 0.45. Is the lawyer correct to accuse the driver of exceeding the 25-MPH speed limit? Explain.arrow_forwardA 7.00 kg object has the given x and y acceleration components. 4 (o51)- (0.73) (107) (079) az = ay 0.79 What is the magnitude Fnet of the net force acting on the object at time i = 4.47 s? Fet What is the angle 0 of the net force at this same time? Give your answer as a number of degrees counter-clockwise from the +x-аxis. IIarrow_forwardQUESTION 2 Q₁ = 9.00 nC is at (0.300 m, 0); Q2 = -2.00 nC is at (0, 0.100 m); Q3=6.00 nC is at (0, 0). What is the direction in degrees of the net force on Q3 counter-clockwise from the +x-direction?arrow_forward
- The speed of a 110-g toy car at the bottom of a vertical circular portion of the track is 8.25 m/s. If the radius of curvature of this portion of the track is 57.5 cm, what are the magnitude and direction of the force the track exerts on the car? (assume the car's path is in the clockwise direction.)?arrow_forwardPlease Asaparrow_forwardA 3.0-kg block sits on top of a 5.0-kg block which is on a horizontal surface. The 5.0-kg block is pulled to the right with a force F⃗ as shown in the figure . The coefficient of static friction between all surfaces is 0.56 and the kinetic coefficient is 0.39.What is the minimum value of F needed to move the two blocks? If the force is 10% greater than your answer for (a), what is the acceleration of each block?arrow_forward
- Flying Circus of Physics A student of weight 672 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude of the normal force on the student from the seat is 588 N. (a) What is the magnitude of FN at the lowest point? If the wheel's speed is doubled, what is the magnitude FN at the (b) highest and (c) lowest point? N (a) Number (b) Number (c) Number Units Units Units Varrow_forward86. mmh The drawing shows a large cube (mass = 25 kg) being acceler- ated across a horizontal frictionless surface by a horizontal force P. A small cube (mass = 4.0 kg) is in contact with the front surface of the large cube and will slide downward unless P is sufficiently large. The coefficient of static friction between the cubes is 0.71. What is the smallest magnitude that P can have in order to keep the small cube from sliding downward? -Hs = 0.71 Frictionlessarrow_forwardA 3.5 kg block is pushed along a horizontal floor by a force F of magnitude 15 N at an angle q = 40 with the horizontal. The coefficient of kinetic friction between the block and the floor is 0.25. Calculate the magnitudes of a) the frictional force on the block from the floor and b) the block's acceleration.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY