What number of atoms of nitrogen are present in 1.00 g of each of the compounds in Exercise 51?
(a)
Expert Solution
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of nitrogen atoms present in each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of nitrogen
(N) atoms in
1.00g of
NH3.
Explanation of Solution
Given
The mass of
NH3 is
1.00g.
The molar mass of
NH3 is
17.034g/mol.
Formula
The number of moles of
NH3 is calculated as,
MolesofNH3=MassofNH3MolarmassofNH3
Substitute the values of mass and molar mass of
NH3 in above equation.
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(b)
Expert Solution
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of nitrogen atoms present in each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of nitrogen
(N) atoms in
1.00g of
N2H4.
Explanation of Solution
Given
The mass of
N2H4 is
1.00g.
The molar mass of
N2H4 is
32.052g/mol.
Formula
The number of moles of
N2H4 is calculated as,
MolesofN2H4=MassofN2H4MolarmassofN2H4
Substitute the values of mass and molar mass of
N2H4 in above equation.
The number of atoms is calculated by multiplying the number of moles with Avogadro’s number.
(c)
Expert Solution
Interpretation Introduction
Interpretation: The mass of compound is given. By using the mass, the number of nitrogen atoms present in each of the compound given in exercise 51 is to be determined.
Concept introduction: The atomic mass is defined as the sum of number of protons and number of neutrons.
Molar mass of a substance is defined as the mass of the substance in gram of one mole of that compound.
The molar mass of any compound can be calculated by adding of atomic weight of individual atoms present in it.
The amount of substance containing
12g of pure carbon is called a mole. One mole of atoms always contains
6.022×1023 molecules. The number of molecules in one mole is also called Avogadro’s number.
To determine: The number of nitrogen
(N) atoms in
1.00g of
(NH4)2Cr2O7.
Explanation of Solution
Given
The mass of
(NH4)2Cr2O7 is
1.00g.
The molar mass of
(NH4)2Cr2O7 is
250.28g/mol.
Formula
The number of moles in
(NH4)2Cr2O7 is calculated as,
need help please and thanks dont understand only need help with C-F
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal…
Please correct answer and don't used hand raiting
need help please and thanks dont understand a-b
Learning Goal:
As discussed during the lecture, the enzyme HIV-1 reverse transcriptae (HIV-RT) plays a significant role for the HIV virus and is an important drug target. Assume a concentration [E] of 2.00 µM (i.e. 2.00 x 10-6 mol/l) for HIV-RT. Two potential drug molecules, D1 and D2, were identified, which form stable complexes with the HIV-RT.
The dissociation constant of the complex ED1 formed by HIV-RT and the drug D1 is 1.00 nM (i.e. 1.00 x 10-9). The dissociation constant of the complex ED2 formed by HIV-RT and the drug D2 is 100 nM (i.e. 1.00 x 10-7).
Part A - Difference in binding free eenergies
Compute the difference in binding free energy (at a physiological temperature T=310 K) for the complexes. Provide the difference as a positive numerical expression with three significant figures in kJ/mol.
The margin of error is 2%.
Part B - Compare difference in free energy to the thermal energy
Divide the…
Chapter 5 Solutions
Bundle: Chemistry: An Atoms First Approach, Loose-leaf Version, 2nd + OWLv2 with Student Solutions Manual, 4 terms (24 months) Printed Access Card
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.