Chemistry In Focus
6th Edition
ISBN: 9781305084476
Author: Tro, Nivaldo J., Neu, Don.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5E
Interpretation Introduction
Interpretation:
The importance of the Lewis theory is to be discussed with the help of examples.
Concept Introduction:
According to the Lewis theory, in
The Lewis structure of an element is represented as dots surrounding the chemical symbol of the element. Dots represent the valence electrons.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is this theory successful? Can you name some of the limitations of the theory?
Drag the appropriate items to their respective bins.
to determine the shape of the
molecule or ion
to determine the formulas of ionic
compounds
Lewis theory allows us
to account for the paramagnetism of
some species (e.g. oxygen)
to determine how the bonds in the
molecules and ions form
to predict what molecules or ions will
be stable, which will be more
reactive, and which will not exist
to account for the low melting points
and boiling points of molecular
compounds compared to ionic
compounds
Lewis theory does not allow us
Reset
Help
Predicting deviations from ideal bond angles
Consider the nitrogen trifluoride (NF3) molecule.
What is the central atom? Enter its chemical symbol.
How many lone pairs are around the central atom?
What is the ideal angle between the nitrogen-fluorine
bonds?
Compared to the ideal angle, you would expect the
actual angle between the nitrogen-fluorine bonds to
be ...
0
口。
(choose one)
(choose one)
about the same
bigger
smaller
10.) The structural formula of a certain aldehyde (related to formaldehyde) is H3C-CH2-CHO. Draw a Lewis structure for this aldehyde and determine the number of bonds present. Note that a single or a double or a triple bond counts as one bond.
Write the number, not the word.
Chapter 5 Solutions
Chemistry In Focus
Ch. 5 - Drawing Lewis Structures for Ionic Compounds Draw...Ch. 5 - Using Lewis Structures to Determine the Correct...Ch. 5 - Prob. 5.3YTCh. 5 - Prob. 5.4YTCh. 5 - Drawing Lewis Structures for Covalent Compounds...Ch. 5 - Prob. 5.6YTCh. 5 - Prob. 5.7YTCh. 5 - Prob. 5.8YTCh. 5 - Prob. 5.9YTCh. 5 - Determining if a Molecule Is Polar Is SCl2 a polar...
Ch. 5 - Based on the Lewis structures for hydrogen and...Ch. 5 - Prob. 2SCCh. 5 - Prob. 3SCCh. 5 - Prob. 4SCCh. 5 - Prob. 5SCCh. 5 - Prob. 6SCCh. 5 - Prob. 7SCCh. 5 - Why is salt, NaCl, relatively harmless even though...Ch. 5 - If sodium is dropped into water, a loud fizzing...Ch. 5 - Explain ionic bonding according to Lewis theory.Ch. 5 - Prob. 4ECh. 5 - Prob. 5ECh. 5 - Prob. 6ECh. 5 - Draw electron dot structures for the following...Ch. 5 - Explain VSEPR theory. According to this theory,...Ch. 5 - Prob. 9ECh. 5 - Prob. 10ECh. 5 - In what ways is water unique? What about the water...Ch. 5 - What is the difference between a polar and a...Ch. 5 - Why do polar molecules have a greater tendency to...Ch. 5 - Prob. 14ECh. 5 - Lewis Structures for Atoms Draw Lewis structures...Ch. 5 - Draw Lewis structures for each of the following...Ch. 5 - Ionic Lewis Structures Draw a Lewis structure for...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Covalent Lewis Structures Draw a Lewis structure...Ch. 5 - Draw a Lewis structure for each molecular...Ch. 5 - General Lewis Structures Determine whether each...Ch. 5 - Determine whether each compound is ionic or...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - Predicting the Shapes of Molecules Use VSEPR...Ch. 5 - Use VSEPR theory to determine the geometry of the...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - CF2Cl2 is a chlorofluorocarbon implicated in ozone...Ch. 5 - Chlorofluorocarbons have been banned because they...Ch. 5 - Determining Molecular Polarity Determine whether...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Explain why water would be a gas at room...Ch. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - One of the observations that led G. N. Lewis to...Ch. 5 - G. N. Lewis developed a model for chemical bonding...Ch. 5 - The opening quote of this chapter states that Man...Ch. 5 - Draw a Lewis structure of the H2 molecule. If you...Ch. 5 - Prob. 44ECh. 5 - The Lewis structures for CH4,N2,andCO2, along with...Ch. 5 - CH3COCH3 (acetone) is a common laboratory solvent...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- || Predicting deviations from ideal bond angles Consider the carbonyl fluoride (CF₂O) molecule. What is the central atom? Enter its chemical symbol. How many lone pairs are around the central atom? What is the ideal angle between the carbon-fluorine bonds? Compared to the ideal angle, you would expect the actual angle between the carbon-fluorine bonds to be ... 口。 (choose one) (choose one) about the same bigger smallerarrow_forwardELECTRONIC STRUCTURE AND CHEMICAL BONDING Predicting deviations from ideal bond angles Consider the chlorite (C102) a anion. What is the central atom? Enter its chemical symbol. How many lone pairs are around the central atom? What is the ideal angle between the chlorine-oxygen bonds? Compared to the ideal angle, you would expect the actual angle between the chlorine-oxygen bonds to be... 0 0 (choose one) X 3 1/5arrow_forwardWrite the Lewis structure of the moleculearrow_forward
- Consider the phosgene (COC1₂) molecule. What is the central atom? Enter its chemical symbol. How many lone pairs are around the central atom? What is the ideal angle between the carbon-chlorine bonds? Compared to the ideal angle, you would expect the actual angle between the carbon-chlorine bonds to be... 0 口。 (choose one) (choose one) about the same bigger smallerarrow_forwardMany free radicals combine to form molecules that do not contain any unpaired electrons. The driving force for the radical-radical combination reaction is the formation of a new electron-pair bond. Consider the chemical equation. N(g)+NO(g) NNO(g) Write Lewis formulas for the reactant and product species in the chemical equation. Include nonbonding electrons.arrow_forward4. Lewis dot structures are good tools for showing the arrangement of valence electrons in a molecule. They don't however convey correct information about the shape of a molecule. A student described the shapes of the molecules shown below. Both are incorrect. Write an explanation for this student explaining what he did wrong and giving the correct shape of each molecule based on VSEPR theory. Lewis Structure Student identified molecule geometry as... Н—О—H Linear WATER H H:C:H Square planar H МЕТHANEarrow_forward
- Consider the following ion: BrO3¯. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3¯ and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3-? What is its molecular shape? e) Does BrO3 have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3¯ to have longer or shorter bonds than BrO3¯? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. Br HO HO. Br- Compound A Compound B Compound C h) What is the molecular formula for Compound C? What is the empirical formula for Compound C?arrow_forwardConsider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. h) What is the molecular formula for Compound C? What is the empirical formula for Compound C? Please andwer f, g and h the image is for g and harrow_forwardConsider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. (IMAGE WITH POSSIBILITIES) h) What is the molecular formula for Compound C? What is the empirical formula for Compound C?arrow_forward
- Consider the following ion: BrO3−. a) Show the full electron configuration for Br. b) Draw the most correct Lewis structure for BrO3− and briefly explain why your Lewis structure is correct. c) If the structure is stabilised by resonance, draw at least one of the possible resonance forms. If it is not stabilised by resonance, briefly explain why. d) What is the electronic geometry of BrO3−? What is its molecular shape? e) Does BrO3− have a dipole moment? Briefly justify your answer. f) On average, would you expect IO3− to have longer or shorter bonds than BrO3−? Briefly explain your answer. g) Which of the following molecules would you expect to have the lowest vapour pressure? Briefly explain your choice. h) What is the molecular formula for Compound C? What is the empirical formula for Compound C? please answer c, d and earrow_forwardSome theories of aging suggest that free radicals cause certain diseases and perhaps aging in general. As you know from the Lewis model, such molecules are not chemically stable and will quickly react with other molecules. According to some theories, free radicals may attack molecules within the cell, such as DNA, changing them and causing cancer or other diseases. Free radicals may also attack molecules on the surfaces of cells, making them appear foreign to the body’s immune system. The immune system then attacks the cells and destroys them, weakening the body. Draw Lewis structures for the free radicals implicated in this theory of aging, which are given here. a. O2 -b. O- c. OH d. CH3OO (unpaired electron on terminal oxygen)arrow_forwardDraw out Lewis Structures for CO2 and H2O.Using VSEPR Theory make models to represent the two molecules [you do not have to showdouble bonds in your model].From your answer predict the shape of CS2 and H2S. Looking at the Periodic Table predict which of the following molecules will have the sameshape. Using VSEPR theory determine what that shape will be.NCl3 PF3 AlCl3 BrF3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Stoichiometry - Chemistry for Massive Creatures: Crash Course Chemistry #6; Author: Crash Course;https://www.youtube.com/watch?v=UL1jmJaUkaQ;License: Standard YouTube License, CC-BY
Bonding (Ionic, Covalent & Metallic) - GCSE Chemistry; Author: Science Shorts;https://www.youtube.com/watch?v=p9MA6Od-zBA;License: Standard YouTube License, CC-BY
General Chemistry 1A. Lecture 12. Two Theories of Bonding.; Author: UCI Open;https://www.youtube.com/watch?v=dLTlL9Z1bh0;License: CC-BY