Chemistry In Focus
6th Edition
ISBN: 9781305084476
Author: Tro, Nivaldo J., Neu, Don.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 5.9YT
Interpretation Introduction
Interpretation:
Using Lewis structure and VSEPR theory, the molecular geometry of
Concept introduction:
The VSEPR(valence shell electron pair repulsion) theory is helpful in predicting the shapes of molecules from their Lewis structures.
The electron geometries of a molecule are determined on the basis of the total number of electron groups, the number of bonding groups, and the number of lone pairs.
To determine the molecular geometry of the molecule, the Lewis structure is drawn and the electron groups are counted. On the basis of bonding groups, the molecular geometry is predicted.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Chemistry In Focus
Ch. 5 - Drawing Lewis Structures for Ionic Compounds Draw...Ch. 5 - Using Lewis Structures to Determine the Correct...Ch. 5 - Prob. 5.3YTCh. 5 - Prob. 5.4YTCh. 5 - Drawing Lewis Structures for Covalent Compounds...Ch. 5 - Prob. 5.6YTCh. 5 - Prob. 5.7YTCh. 5 - Prob. 5.8YTCh. 5 - Prob. 5.9YTCh. 5 - Determining if a Molecule Is Polar Is SCl2 a polar...
Ch. 5 - Based on the Lewis structures for hydrogen and...Ch. 5 - Prob. 2SCCh. 5 - Prob. 3SCCh. 5 - Prob. 4SCCh. 5 - Prob. 5SCCh. 5 - Prob. 6SCCh. 5 - Prob. 7SCCh. 5 - Why is salt, NaCl, relatively harmless even though...Ch. 5 - If sodium is dropped into water, a loud fizzing...Ch. 5 - Explain ionic bonding according to Lewis theory.Ch. 5 - Prob. 4ECh. 5 - Prob. 5ECh. 5 - Prob. 6ECh. 5 - Draw electron dot structures for the following...Ch. 5 - Explain VSEPR theory. According to this theory,...Ch. 5 - Prob. 9ECh. 5 - Prob. 10ECh. 5 - In what ways is water unique? What about the water...Ch. 5 - What is the difference between a polar and a...Ch. 5 - Why do polar molecules have a greater tendency to...Ch. 5 - Prob. 14ECh. 5 - Lewis Structures for Atoms Draw Lewis structures...Ch. 5 - Draw Lewis structures for each of the following...Ch. 5 - Ionic Lewis Structures Draw a Lewis structure for...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Draw a Lewis structure for each of the following...Ch. 5 - Covalent Lewis Structures Draw a Lewis structure...Ch. 5 - Draw a Lewis structure for each molecular...Ch. 5 - General Lewis Structures Determine whether each...Ch. 5 - Determine whether each compound is ionic or...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - What is wrong with each Lewis structure? Fix the...Ch. 5 - Predicting the Shapes of Molecules Use VSEPR...Ch. 5 - Use VSEPR theory to determine the geometry of the...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - Draw a Lewis structure and use VSEPR theory to...Ch. 5 - CF2Cl2 is a chlorofluorocarbon implicated in ozone...Ch. 5 - Chlorofluorocarbons have been banned because they...Ch. 5 - Determining Molecular Polarity Determine whether...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Determine whether each molecule is polar:...Ch. 5 - Explain why water would be a gas at room...Ch. 5 - Prob. 38ECh. 5 - Prob. 39ECh. 5 - One of the observations that led G. N. Lewis to...Ch. 5 - G. N. Lewis developed a model for chemical bonding...Ch. 5 - The opening quote of this chapter states that Man...Ch. 5 - Draw a Lewis structure of the H2 molecule. If you...Ch. 5 - Prob. 44ECh. 5 - The Lewis structures for CH4,N2,andCO2, along with...Ch. 5 - CH3COCH3 (acetone) is a common laboratory solvent...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Successive substitution of F atoms for H atoms in the molecule CH4 produces the molecules CH3F, CH2F2, CHF3, and CF4. a. Draw Lewis structures for each of the five molecules. b. Using VSEPR theory, predict the geometry of each of the five molecules. c. Specify the polarity (polar or nonpolar) for each of the five molecules.arrow_forwardSuccessive substitution of F atoms for H atoms in the molecule NH3 produces the molecules NH2F, NHF2, and NF3. a. Draw Lewis structures for each of the four molecules. b. Using VSEPR theory, predict the geometry of each of the four molecules. c. Specify the polarity (polar or nonpolar) for each of the four molecules.arrow_forwardExplain ionic bonding according to Lewis theory.arrow_forward
- The electrostatic potential surface for SOCl2 is pictured here. (a) Draw a Lewis electron dot picture for the molecule, and give the formal charge of each atom. (b) What is the molecular geometry of SOCl2? Is it polar?arrow_forwardUse the Molecule Shape simulator (http://openstaxcollege.org/I/6MolecShape) to build a molecule. Starting with the central atom, click on the double bond to add one double bond. Then add one single bond and one lone pair. Rotate the molecule to observe the complete geometry. Name the electron group geometry and molecular structure and predict the bond angle. Then click the check boxes at the bottom and right of the simulator to check your answers.arrow_forwardGiven the bonds C N, C H, C Br, and S O, (a) which atom in each is the more electronegative? (b) which of these bonds is the most polar?arrow_forward
- Use Lewis symbols to show the reaction of atoms to form hydrogen selenide. H2Se. Indicate bonding pairs and lone pairs in the electron-dot formula of this compound.arrow_forwardBond Enthalpy When atoms of the hypothetical element X are placed together, they rapidly undergo reaction to form the X2 molecule: X(g)+X(g)X2(g) a Would you predict that this reaction is exothermic or endothermic? Explain. b Is the bond enthalpy of X2 a positive or a negative quantity? Why? c Suppose H for the reaction is 500 kJ/mol. Estimate the bond enthalpy of the X2 molecule. d Another hypothetical molecular compound, Y2(g), has a bond enthalpy of 750 kJ/mol, and the molecular compound XY(g) has a bond enthalpy of 1500 kJ/mol. Using bond enthalpy information, calculate H for the following reaction. X2(g)+Y2(g)2XY(g) e Given the following information, as well as the information previously presented, predict whether or not the hypothetical ionic compound AX is likely to form. In this compound, A forms the A+ cation, and X forms the X anion. Be sure to justify your answer. Reaction: A(g)+12X2(g)AX(s)The first ionization energy of A(g) is 400 kJ/mol. The electron affinity of X(g) is 525 kJ/mol. The lattice energy of AX(s) is 100 kJ/mol. f If you predicted that no ionic compound would form from the reaction in Part e, what minimum amount of AX(s) lattice energy might lead to compound formation?arrow_forwardA common trait of simple organic compounds is to have Lewis structures where all atoms have a formal charge of zero. Consider the following incomplete Lewis structure for an organic compound called methyl cyanoacrylate, the main ingredient in Super Glue. Draw a complete Lewis structure for methyl cyanoacrylate in which all atoms have a formal charge of zero.arrow_forward
- Explain the difference between electron-pair geometry and molecular structure.arrow_forwarda. How many sticks did you need to make the skeleton structure?____________ b. How many sticks are left over? ____________ If your model is to obey the octet rule, each ball must have four sticks in it except for hydrogen atom balls, which need and can only have one. Each atom in an octet rule species is surrounded by four pairs of electrons. c. How many holes remain to be filled? ____________ Fill them with the remaining sticks, which represent nonbonding electron pairs. Draw the complete Lewis structure for NH2Cl using lines for bonds and pairs of dots for nonbonding electrons.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
World of Chemistry, 3rd edition
Chemistry
ISBN:9781133109655
Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:Brooks / Cole / Cengage Learning
General, Organic, and Biological Chemistry
Chemistry
ISBN:9781285853918
Author:H. Stephen Stoker
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Types of bonds; Author: Edspira;https://www.youtube.com/watch?v=Jj0V01Arebk;License: Standard YouTube License, CC-BY